
On Crowdsensed Data Acquisition using
Multi-Dimensional Point Processes

Saket Sathe†, Timos Sellis‡, Karl Aberer?

†IBM Research – Australia.
ssathe@au.ibm.com

‡RMIT University, Australia.
timos.sellis@rmit.edu.au

?EPFL, Switzerland.
karl.aberer@epfl.ch

Abstract—Crowdsensing applications are increasing at a
tremendous rate. In crowdsensing, mobile sensors (humans,
vehicle-mounted sensors, etc.) generate streams of information
that is used for inferring high-level phenomena of interest (e.g.,
traffic jams, air pollution). Unlike traditional sensor network
data, crowdsensed data has a highly skewed spatio-temporal
distribution caused largely due to the mobility of sensors [1].
Thus, designing systems that can mitigate this effect by acquiring
crowdsensed at a fixed spatio-temporal rate are needed. In
this paper we propose using multi-dimensional point processes
(MDPPs), a mathematical modeling tool that can be effectively
used for performing this data acquisition task.

I. INTRODUCTION

Recent times have seen a dramatic rise of crowdsensing
[2]–[4]. In this paradigm mobile sensors, like smartphones1,
sensors mounted on vehicles (cars or buses), or humans them-
selves are used for gathering information and inferring various
aspects regarding a phenomena of interest. Here the sensors
(or humans) are mobile and therefore the data produced by
them is in the form of spatio-temporal data streams. Humans
are involved for acquiring information that is hard to sense
using sensors (e.g., traffic jams). The data acquired using
crowdsensing principles is typically used for performing high-
level inference [2] or phenomena detection [1].

One would rightly ask, how is crowdsensed data acquisition
different from traditional wireless sensor network (WSN) data
acquisition? The principal differences between them are as
follows: (1) in crowdsensing, sensors are mobile and not
stationary, (2) the number of mobile sensors in a particular
region and time is unpredictable and is spatio-temporally
skewed, (3) the rate at which these sensors generate data cannot
be easily controlled, this is especially true for humans, who
may decide to perform or not perform certain tasks depending
on the incentive offered.

Thus, we need a method for acquiring mobile crowdsensed
data streams (MCDS) that addresses the aforementioned dif-
ferences yet is simple, elegant, and enables declarative spec-
ification of data acquisition queries. At its core, we believe
that the most simplest acquisitional queries for crowdsensed
data acquisition will have to provide at least the following
information: (1) the attribute they are interested in acquiring,

1A standard smartphone has about 10 sensors. See http://bit.ly/sg3specs.

(2) the region or sub-region from which the attribute should
be acquired, (3) the rate (per unit area and time) at which this
attribute should be acquired.

Given our straightforward world-view of crowdsensed data
acquisition, it is apparent that it drastically mismatches the
characteristics exhibited by MCDS. On the one hand, we
have the most simplest description of acquiring crowdsensed
data streams, and on the other hand, we have mobile sensors
having uncontrollable mobility and varying data generation
rates. The techniques proposed in this paper bridges this gap
by accepting user queries for acquiring MCDS and ensures (at
least in a probabilistic sense) that these queries are answered
satisfactorily. To achieve this goal, we propose a novel set of
probabilistic streaming operators that are derived using MDPPs
and can be implemented using only a few lines of code.
Similar to existing stream processing operators [5]–[7], these
operators can be connected to form an execution topology
for simultaneously processing a large number of acquisitional
queries.

Related Work: Acquisitional queries for fixed sensors are
extensively surveyed in [8]. These works either use an overlay
network (tree-based or ad-hoc routing protocols) or proba-
bilistic approaches for acquiring and querying sensor data
[9]. Unfortunately, these principles cannot be extended for
acquiring MCDS, as MCDS acquisition is a fundamentally dif-
ferent problem as compared to WSN data acquisition. Stream
processing architectures [5]–[7] propose declarative syntax for
defining an execution topology over a set of stream processing
operators. This paper significantly enhances such systems
by providing stream processing operators for continuously
acquiring MCDS at probabilistically guaranteed user-specified
rates.

II. BACKGROUND

Consider a geographical area of interest denoted by R.
We assume that there are m mobile sensors, denoted as
s1, s2, . . . , sm, in the regionR. These mobile sensors comprise
of sensors (smartphones, wearables, handheld sensors, etc.)
carried by humans or vehicle-mounted sensors. In certain
instances, humans assist in a sensing task by responding to
a question displayed on their smartphones related to them or
their surrounding. Each mobile sensor is assumed to have local
memory to store sensed information.



We assume that the mobile sensors have agreed to share all
the information required for processing queries with a central
server. Examples of such information could be GPS location,
microphone level, phone status, values from an embedded
sensor, or a response to a crowdsensed attribute etc.

For simplicity, we assume that there are a fixed set of
attributes of interest A〈1〉, A〈2〉, . . . , A〈k〉. These attributes
are either sensed by humans or by sensors. Human-sensed
attributes are the ones that are typically hard to sense with
a sensor. For e.g., whether it is currently raining around a
mobile sensor could be a human-sensed attribute. Sensor-
sensed attributes are observed using a sensor, e.g., the current
ambient temperature around a mobile sensor. We assume that
each mobile sensor generates a stream of tuples. A tuple of
attribute A〈j〉 is denoted as (t

〈j〉
i , x

〈j〉
i , y

〈j〉
i , a

〈j〉
i ), where the

first three entries are the space-time co-ordinates, a〈j〉i is the
value of attribute A〈j〉, and i is a unique tuple identifier across
sensors. The position can also include a z-coordinate; for
brevity reasons, we only work with 2-D coordinates.

Before we define multi-dimensional point processes
(MDPPs) and discuss how they can be used for acquiring
crowdsensed streams, we present two running examples that
will be used throughout the paper. Rain monitoring is an
example where we are interested to acquire data about whether
it is raining or not in a given sub-region R′ ⊆ R. This
requires acquisition of the human-sensed boolean attribute
A〈1〉 = rain. Ambient temperature monitoring is about
knowing the ambient temperature sampled from a chosen
subset of mobile sensors in region R′ ⊆ R. This requires
that we acquire the sensor-sensed real value of the attribute
A〈2〉 = temp. In both the examples above, we are interested
in continuously acquiring crowdsensed data streams at a user
defined spatio-temporal acquisition rate.

III. ACQUIRING CROWDSENSED DATA STREAMS

Recall that the simplest queries for acquiring MCDS will
have to specify the following parameters: 1) The attribute A〈j〉
they want to acquire, 2) The region from which they want to
acquire the given attribute, 3) the rate at which they want to
acquire the attribute. Our task is to acquire a crowdsensed
data stream given the three aforementioned parameters. An
example of a acquisitional query on attribute A〈1〉, denoted as
Q〈1〉, could be the following:

Q〈1〉: Acquire the attribute A〈1〉 = rain from region
R′ ⊂ R at the rate of 10 /km2/min.

The output of this query is a MCDS of tuples (t, x, y, rain)
at the rate of 10 /km2/min.

Undoubtedly, the most challenging component of the above
query is to maintain the expected spatio-temporal rate. Once
we have accomplished the task of acquiring the desired MCDS
at the specified rate, there are several other existing methods,
systems, and query languages that can be used for processing
such streams [5]–[7]. In pure sensor data acquisition systems
[9], maintaining such a rate is not significantly difficult, since
the sensors in a WSN are stationary and can be sampled any
time as long as they are powered and queries do not depend
on human input.

When queries enable human input and sensors have un-
predictable mobility, such assumptions on any-time sampling
are difficult to justify. The reason is that we have nearly no
control on the mobile sensors. For example, if a human user
is requested to respond to the question: Is it raining around
you? His/her reply could be unpredictably delayed for several
reasons: he/she is not interested in responding at this moment,
he/she thinks that the incentive offered for responding is not
enough or he/she has moved to a different location, which now
is not of interest to the query.

In addition to this challenge, our design goal is to process a
large number of queries simultaneously. The naı̈ve strategy of
processing each query from scratch (i.e., individually), is not
cost effective especially for the human-sensed attributes. This
is because the data acquired for a particular attribute will not
be re-used across queries. Instead, multiple query optimization
principles need to be employed in this setting [10].

To address these challenges, we propose two novel ideas:
(1) we characterize the spatio-temporal arrival rate of crowd-
sensed data at the server using MDPPs [11], (2) in Section IV,
we propose algebraic operators that can be used for performing
a wide variety of operations (rate modifications, partitioning,
etc.) on MDPPs. These operators can be implemented in a few
lines of code and can re-use data to simultaneously fabricate
crowdsensed data streams for multiple queries.

A. Multi-Dimensional Point Processes (MDPPs)

A MDPP is a n-dimensional generalization of the Poisson
process [11], which operates only in the time dimension. A
Poisson process has a parameter known as the rate, denoted
as λ. It indicates on an average how many samples are expected
in a particular time window. For example, if a Poisson process
models the length of a queue at a shopping counter, then the
parameter λ indicates the number of customers arriving in a
given time interval.

Similarly, a MDPP’s rate parameter indicates how many
samples are expected in a given n-dimensional window. We
model the spatio-temporal arrival of data from each attribute
as a 3-D MDPP, where the three dimensions refer to space
and time. The intuition behind using MDPPs is primarily:
(a) it has been shown that a large variety of spatio-temporal
arrival patterns can be modeled as MDPPs [11], [12], (b) as
discussed later, MDPPs have several elegant properties that can
be exploited for managing crowdsensed data streams.

We use two types of MDPPs: homogeneous and inho-
mogeneous. A homogeneous MDPP2 for attribute A〈j〉 has a
constant positive rate λ〈j〉 over space and time and is denoted
as P 〈j〉(λ,R), where R indicates its spatial extent. To make
the notation concise, we drop the superscript 〈j〉 of λ in the
notation P 〈j〉(λ,R), as it is clear that we are referring to
attribute A〈j〉. The inhomogeneous MDPP has a positive rate
λ̃〈j〉(t, x, y) that is a function of both space and time and is
denoted as P̃ 〈j〉(λ̃,R). Often the rate of an inhomogeneous
MDPP is modeled using a parametrized form as,

λ̃〈j〉(t, x, y;θ) = θ0 + θ1t+ θ2x+ θ3y, (1)

2All MDPPs in this paper are homogeneous, unless explicitly specified.



where θ = {θ0, . . . , θ3}. λ̃〈j〉(t, x, y;θ) is also known as the
conditional rate; it establishes the rate of an inhomogeneous
MDPP at a point (t, x, y), given the parameters θ. Such a
parametrization has two advantages: (1) given a set of acquired
tuples for an attribute A〈j〉, we can estimate the rate of
an inhomogeneous MDPP using techniques like maximum-
likelihood estimation [12], (2) it gives us a continuous function
with parameters (t, x, y) for querying the rate at a given
location. We use the conditional rate model given in Eq.
(1) to model the spatio-temporal variation of the rate of an
inhomogeneous MDPP.

Crowdsensed Stream Fabricator

Request / Response Handler

Acquired Crowdsensed Streams Query Input

s1

s2

s3 s4s5

Fig. 1: Architecture of CrAQR.

IV. SYSTEM ARCHITECTURE

The system architecture used for query processing is shown
in Figure 1. The region R is partitioned into a

√
h ×

√
h

sized grid. h is a user-defined parameter and controls the
granularity at which queries can be processed. As we shall
discuss in Section V, this partitioning is entirely logical, in
reality only the grid cells that are useful for query processing
are materialized. A grid cell with xy-coordinates (q, r) is
denoted as R(q,r) and

area(R) =
∑
∀(q,r)

area(R(q,r)), (2)

where area(·) is a function that computes the area of its
argument. A single-attribute query should be on a region with
area at least area(R(q,r)).

A. Request/Response Handler

The request/response handler has the task of sending data
acquisition requests to mobile sensors and collecting their
responses. It uses a parameter known as the budget. Budget
is defined as the number of acquisitional requests per attribute
and per grid cell that can be sent in a given duration of time.
For example, the rain attribute could have a budget of 100
/hr on the region R(1,2). The budget specification does not
need a spatial component, as all the grid cells are of equal
size. The budget for an attribute A〈j〉 on R(q,r) is denoted
as β

〈j〉
(q,r). Data acquisition requests are sent to a randomly

selected set of mobile sensors. Mobile sensors are sampled
with or without replacement, depending on the number of
mobile sensors available.

B. Crowdsensed Stream Fabricator

This is the most important component responsible for
performing the operations required for answering acquisitional
queries. It uses a novel set of proposed operators called point
process transformation (PMAT) operators. PMAT are algebraic
operators that are used for manipulating point processes. They
can be used for performing tasks such as, converting an in-
homogenous MDPP into a homogeneous MDPP or converting
one MDPP into another with lower rate, etc.

Here, we will discuss in detail the functionality provided by
some of these operators. In the following section, we will show
how they can be interconnected together for constructing an
execution topology similar to traditional stream data manage-
ment systems. Such a topology can be used for simultaneously
fabricating the required MCDS for multiple queries.

1) Point Process Transformation Operators: One of the
most elegant properties of MDPPs is that their rate can be
modified by randomly dropping a few tuples [11]. PMAT
operators use such properties to define a set of algebraic
operators on point processes. All PMAT operators are prob-
abilistic and approximate with provable expected behaviour
[11]; thus dramatically simplifying their implementation. We
have researched many more operators than presented below,
but due to space constraints and in order to convey the key
ideas, we only discuss four most important operators.

Flatten: This operator converts a single-attribute inhomoge-
neous MDPP P̃ 〈j〉(λ̃,R?) to an approximately homogeneous
point process P 〈j〉(λ̄,R?) with rate λ̄〈j〉, where R? ⊂ R. The
intuition behind the flatten operator is that a point process can
be made homogeneous by retaining a random subset of tuples,
such that more tuples are retained in areas of low rate and less
tuples are retained in areas of high rate [12].

Concretely, it works as follows. Given a batch of size n
of the spatio-temporal co-ordinates {t〈j〉i , x

〈j〉
i , y

〈j〉
i }ni=1 of the

crowdsensed tuples of attribute A〈j〉 obtained from the region
R? and the desired rate λ̄〈j〉, it computes the probability for
each tuple to be retained in the batch. This probability is called
the retaining probability and is defined as

p
〈j〉
i =

λ̄〈j〉

λ̃〈j〉(t〈j〉i , x
〈j〉
i , y

〈j〉
i ;θ)× λ〈j〉c

, (3)

where λ〈j〉c =
∑n
i=i λ̃

〈j〉(t〈j〉i , x
〈j〉
i , y

〈j〉
i ;θ)−1 and is a constant

term over the batch. The retaining probability p〈j〉i of the tuple
i is high, if it is from an area of low rate, as compared to λ̄〈j〉.

It could happen that p〈j〉i > 1. This is when the denominator
of Eq. (3) is less than λ̄〈j〉. The operator labels such instances
as rate violations and reports percent rate violation in a batch.
Percent rate violation is denoted as N 〈j〉v , and the retaining
probabilities of such violations are rounded to 1. If N

〈j〉
v

increases, it means that sufficient tuples are not present in the
batch to create a point process with rate λ̄〈j〉. As we will
discuss in Section V, N 〈j〉v is used for tuning the rate at which
the request/response handler sends acquisition requests.

In the next step, flatten generates a Bernoulli random
variable b with probability p〈j〉i ; a tuple (t

〈j〉
i , x

〈j〉
i , y

〈j〉
i ) is for-

warded to the next operator if b = 1 and is discarded otherwise.



If necessary, the discarded tuples can be stored separately.
As shown in [12], this procedure produces an approximately
homogeneous point process. The flattening operation can also
be performed over sliding windows, as opposed to batches.
This can be done using online parameter estimation algorithms
like stochastic gradient descent to estimate parameters θ in
[13] and maintaining p

(i)
j and N

〈j〉
v over a sliding window.

Lastly, the flatten operator is depicted as follows:

FP̃ 〈j〉(λ̃,R?) P 〈j〉(λ̄,R?)
N
〈j〉
v

Thin: Converts a MDPP P 〈j〉(λ1,R?) into another MDPP
P 〈j〉(λ2,R?) whose rate is strictly less than the original
MDPP, i.e. λ〈j〉2 < λ

〈j〉
1 and R? ⊂ R. It is drawn as the

following block:

TP 〈j〉(λ1,R?) P 〈j〉(λ2,R?)

Thinning works as follows: (1) compute a probability p =
λ
〈j〉
2

λ
〈j〉
1

, (2) draw a random sample b from a Bernoulli distribution
with probability p, which is equivalent to a biased coin toss
with bias p, (3) if b = 1 then the tuple is forwarded to the next
operator, otherwise it is dropped. It can be shown that this
simple procedure produces a point process with the desired
rate λ〈j〉2 .

Partition: Partitions a point process P 〈j〉(λ,R?) into two
point processes of the same rate λ〈j〉 but on different regions
R?1 ⊂ R? and R?2 ⊂ R?, such that R?1∩R?2 = ∅. It is denoted
as follows:

P 〈j〉(λ,R?) P P 〈j〉(λ,R?1)

P 〈j〉(λ,R?2)

This operator is implemented by checking to which region
the incoming tuple belongs, and then transmitting it to the
appropriate output branch. This operator can be easily extended
to partition processes into multiple regions.

Union: It unions two MDPPs P 〈j〉(λ,R?1) and P 〈j〉(λ,R?2)
to form a process P 〈j〉(λ,R?3) where R?3 = R?1 ∪ R?2. It is
denoted as follows:

P 〈j〉(λ,R?1)

P 〈j〉(λ,R?2)
U P 〈j〉(λ,R?3)

Notice that for computing R?1 ∪ R?2 the rectangles should
be adjacent and with a common side of equal length. This
operator can be easily extended to union multiple MDPPs at
once.

V. QUERY PROCESSING

In this section we will discuss how the PMAT operators
are used for simultaneously processing multiple acquisitional
queries, and ensuring that the desired rates for each attribute
of the query are satisfied over the query region.

We explain query processing in detail using our toy exam-
ples from Section II. Recall, A〈1〉 = rain and A〈2〉 = temp

and suppose we have queries Q
〈1〉
1 , Q〈2〉2 , and Q

〈2〉
3 over

the regions R1, R2, and R3 respectively, and they have
requested rates λ〈1〉1 , λ〈2〉2 , and λ

〈2〉
3 . In addition, we assume

that λ〈1〉1 > λ
〈2〉
2 > λ

〈2〉
3 . Then, query processing consists of

the following two phases:

A. Topology Construction

In this phase the data structures required for query process-
ing are initialized. First, a hashmap is constructed where the
keys of the hashmap are the xy-cordinates of grid cells R(q,r).
The value of a key (q, r) is the execution topology that is re-
sponsible for processing all the tuples that are crowdsensed in
R(q,r). This execution topology is formed by interconnecting
a set of PMAT operators as explained below.

Query Insertions: For a given query region, we compute the
amount of overlap that it has with each grid cell R(q,r). In
our example, say we are inserting Q〈1〉, then we compute the
overlap between all grid cells and R1. Next, for each grid cell
that has a non-zero overlap with the query region, we check
whether the key for that grid cell is present in the hashmap.

If the key is absent, it is created and a F-operator is added
to it. The first operator is always the F-operator, as all the
other operators only work on homogeneous point process, and
this is the only operator that has the capability of converting an
inhomogeneous MDPP to a homogeneous MDPP. Next, the T -
operator is added for each attribute followed by the P-operator
to partition-out the overlapping region from the grid cell.

If the key is present, then (1) the T -operators are added
such that the rates of all the existing T -operators remain
sorted in a descending order and the highest rate T -operator
is closest to the F-operator, (2) two T -operators cannot be
consecutively placed unless there is a branching point between
them, otherwise these operators can be combined to form a
single T -operator (refer Fig. 2(b)), (3) if needed, the output
rate of the F-operator is changed to a value greater than the
output rate of the first T -operator. Finally, if required the P-
operators are added after the T -operators. In our example,
P-operators are required only for Q〈2〉3 , since Q〈1〉1 and Q

〈2〉
2

perfectly overlap the grid cells.

Query Deletions: When a query is deleted, then all the
crowdsensed data streams that are part of that query are
removed. Concretely, referring to Fig. 2(b) and Fig. 2(c),
crowdsensed data streams are deleted from right to left, until
we hit a branching point or until all the streams and the key
in the hashmap are deleted. For example, if we delete Q〈1〉,
then first the crowdsensed stream P 〈1〉(λ1,R1) is deleted,
followed by the U-, T -, and F-operators associated with the
regions R(2,3), R(3,2) and R(3,3). Finally, all the entries in the
hashmap for these regions are removed. If two consecutive T -
operators are created in this process, then they are merged to
form a single T -operator.

Budget Tuning: The F-operators report the percent rate
violation N

〈j〉
v in a batch. We check whether N 〈j〉v is under

a user-defined threshold. If N 〈j〉v exceeds the threshold, then



R
equest/R

esponse 
H

andlerqr

2

1

3
2

1

3

(1, 1)

(2, 1)
(2, 2)
(2, 3)

(3, 2)
(3, 3)

(1, 2)Q
h1i
1 Q

h2i
2 Q

h2i
3

(q, r)

T
T

UT
T

T

T

U
T P

T P
U

(a) map (b) process (c) merge

Q
h2i
2

Q
h1i
1

Q
h2i
3

P h1i(�1, R1)

P h2i(�2, R2)

P h2i(�3, R3)
F
F
F
FF

F
FAh1i tuplesAh2i tuples — branching point

R1 R2

R3

Fig. 2: Query processing: (a) map assigns the tuples to their respective key in the hashmap. (b) process executes the
execution topology for each grid cell and fabricates partial crowdsensed data streams. (c) merge aggregates these partial streams
appropriately to form the ultimate crowdsensed data stream. The percent rate violation N 〈j〉v (not shown in figure) given by the
F-operators are used for tuning request/response handler’s budget.

the budget β〈j〉(q,r) is increased by ∆β, otherwise it is decreased
by the same amount. If the budget cannot be increased beyond
a limit, then the user is requested to either accept the feasible
rate or pay more to obtain the required rate.

Stream Fabrication: When the request/response handler sends
a batch of tuples for attribute A〈j〉, it is determined in which
grid cells each of the tuple lies, and then it is forwarded to
the corresponding execution topology. The tuples pass through
various PMAT operators and finally form the per grid-cell
MCDS. Lastly, the final MCDS are constructed using the U-
operator on the per grid-cell streams, see Fig. 2(c). These
streams are returned to the user or can be further processed
using well-known stream processing frameworks.

VI. EXTENSIONS AND OPTIMIZATIONS

This is a work-in-progress, there are several interesting
and challenging topics that we plan to explore in the future
versions. Below we present a glimpse of such topics:

• Including incentives: Currently, if there are significant
rate violations then the request/response handler, in the
hope of reducing violations, increases its rate of sending
acquisition requests. Another alternative is to offer more
incentive to the mobile sensors to respond. Therefore, we
will include mechanisms to define and optimally distribute
such incentives [14].
• Alternative topologies: The execution topology presented

in Section V is one of the many ways in which queries
can be processed. For example, a tree-like topology can be
formed. We have already started working on the necessary
operators to perform this task.
• Query optimization: We should define the cost of process-

ing a single query, and prepare an execution topology that
minimizes this cost. Response time, power consumption,
communication cost due to operator placement are some
of the aspects that we plan to consider during optimization.
• Handling errors: Errors can be introduced by sampling

constraints, GPS errors, sensors inaccuracies, or errors in
human judgment. In the future, we will explore methods
for mitigating the effect of such errors on query accuracy.

VII. CONCLUSION

Crowdsensing applications are growing rapidly and this
poses many exciting data management challenges. In this paper
we proposed techniques for elegantly acquiring crowdsensed
data streams using MDPPs. We proposed a novel set of stream-
ing operators (PMAT) for simultaneously acquiring multiple
MCDS. Lastly, we discussed extensions and optimizations that
we will explore in the future. We believe this will open exciting
research areas for the data management community.

REFERENCES

[1] K. Aberer, S. Sathe, D. Chakraborty, A. Martinoli, G. Barrenetxea,
B. Faltings, and L. Theile, “OpenSense: Open community driven
sensing of environment,” in IWGS, 2010.

[2] “Waze,” https://www.waze.com/. [Online]. Available: https://www.
waze.com/

[3] “Premise,” http://www.premise.com/.
[4] “MobileWorks,” https://www.mobileworks.com/.
[5] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,

M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora : A new model and
architecture for data stream management,” VLDB Journal, pp. 120–139,
2003.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss,
and M. Shah, “TelegraphCQ : Continuous dataflow processing for an
uncertain world,” in CIDR, 2003.

[7] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language
: semantic foundations,” VLDB Journal, vol. 15, pp. 121–142, 2006.

[8] S. Sathe, T. Papaioannou, H. Jeung, and K. Aberer, “A survey of
model-based sensor data acquisition and management,” in Managing
and mining sensor data. Springer, 2013, pp. 9–50.

[9] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TinyDB:
An acquisitional query processing system for sensor networks,”
TODS, vol. 30, no. 1, pp. 122–173, Mar. 2005. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1061318.1061322

[10] T. Sellis, “Multiple-query optimization,” TODS, vol. 13, no. 1, pp. 23–
52, 1988.

[11] D. J. Daley and D. Vere-Jones, An introduction to the theory of point
processes. Springer, 1988, vol. 1-2.

[12] R. D. Peng, F. P. Schoenberg, and J. A. Woods, “A space–time
conditional intensity model for evaluating a wildfire hazard index,”
Journal of the American Statistical Association, vol. 100, no. 469, 2005.

[13] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp.
177–186.

[14] “Amazon Mechanical Turk,” https://www.mturk.com/.


