
Kernel-Based Feature Extraction For Collaborative
Filtering

Saket Sathe∗, Charu C. Aggarwal∗, Xiangnan Kong†, Xinyue Liu†
∗IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA.

Email: {ssathe, charu}@us.ibm.com
†Computer Science Department, Worcester Polytechnic Institute, USA.

Email: {xkong, xliu4}@wpi.edu

Abstract—Singular value decomposition (SVD) has been used
widely in the literature to recover the missing entries of a
matrix. The basic principle in such methods is to assume that
the correlated data is distributed with a low-rank structure. The
knowledge of the low-rank structure is then used to predict the
missing entries. SVD is based on the assumption that the data
(user ratings) are distributed on a linear hyperplane. This is
not always the case, and the data could often be distributed
on a nonlinear hyperplane. Therefore, in this paper, we explore
the methodology of kernel feature extraction to complement off-
the-shelf methods for improving their accuracy. The extracted
features can be used to enhance a variety of existing methods
such as biased matrix factorization and SVD++. We present
experimental results illustrating the effectiveness of using this
approach.

I. INTRODUCTION

A well-known method for making recommendations using
collaborative filtering is the latent factor approach [1]. The
latent factor approach implicitly assumes that the ratings can
be projected on a low-dimensional linear hyperplane. The
given ratings are used for estimating this hyperplane and their
low-dimensional projections on this hyperplane. This projected
representation provides a robust estimation of the unobserved
ratings. The key idea behind the success of the latent factor
models is that the lower dimensional hyperplane, on which
the data is projected, can be estimated using an incomplete
ratings matrix. This approach will, however, not be effective,
when the data does not naturally align along a low-dimensional
linear hyperplane. In many cases, the matrix can be better
projected on nonlinear manifolds. Therefore, one approach
is to formulate the problem such that the latent factors are
in a nonlinear kernel space. This approach often overfits
the sparsely specified ratings matrix and further worsens the
quality of the underlying solution.

In many settings, it is more useful to leverage kernel
methods for feature extraction rather than directly solving a
particular problem with the kernel trick. Feature extraction
provides many benefits in terms of combining the extracted
features in an additive way with methods that are already
known to be successful for particular data sets. In almost
all cases that we tested, the feature extraction approach was
able to improve the performance of a base method, such as
biased matrix factorization and SVD++. Therefore, if one can
determine the particular approach, which is suitable for a

given data set (with cross-validation), the feature extraction
methodology will still be able to enhance its accuracy. This
type of approach provides the flavor of a feature extraction-
based meta-algorithm. However, the process of combining
the extracted features with a specific method requires some
additional tricks. For example, in the case of matrix factoriza-
tion, the extracted features are used to fix one of the factors
and extract the other set of features. This avoids the natural
tendency of kernel methods to overfit, and is therefore comple-
mentary to traditional matrix factorization models. Likewise,
the approach can be used to enhance several off-the-shelf
matrix factorization models with modest modifications. In the
particular case of factorization methods and their variants, it
is relatively easy to use any kernel of choice for deriving a
new set of features. As specific examples, we will show the
applicability of this approach to biased matrix factorization
and SVD++, and an extended version of this paper discusses
its application to item-based neighborhood models.

Our kernel-based methods are focused on extracting item
features. As a complementary approach, one can also ex-
tract analogous user features. However, we did not pursue
this approach because we found that (a) the approach was
too computationally intensive because the number of users
is often much greater than the number of items; (b) in a
recommendation system, users have more churn than items,
and, therefore, the resulting model becomes less relevant with
time; (c) our preliminary tests showed that item factors always
provided better accuracy. Therefore, we have omitted this
complementary approach from this paper.

A related work in [3] proposes a specific kernel-based
method, but it cannot be used to improve the effectiveness of a
particular matrix factorization model. The approach proposed
in [3] is sometimes outperformed by existing techniques be-
cause different methods perform more effectively on different
data sets. Therefore, unlike the work in [3], our work has
the flavor of a general meta-algorithm and has the ability to
consistently improve collaborative filtering models.

II. BACKGROUND AND MOTIVATION

The basic idea of all latent factor models is to recover a
low-rank structure. In this paper, we explore a popular low-
rank latent factor method known as the SVD model. Imagine a
data set where the ratings are distributed on a low-dimensional

linear hyperplane

(a) Fitting ratings with a linear hyperplane

nonlinear manifold

(b) Fitting ratings with a nonlinear manifold
Figure 1. Linear and non-linear manifolds in 3-d space.

hyperplane as shown in Figure 1(a). It is possible to use SVD
to discover this low dimensional plane, even when the data
is incompletely specified. Assume that we have m users and
n items. Let R = [rij] be an m × n ratings matrix, which
is incompletely specified. Let E be the set of entries in the
m× n ratings matrix R that are specified.

E = {(i, j) : rij is specified} (1)

We want to factorize R ≈ UV T . Note that U = [uij] is an
m×k matrix, whereas V = [vij] is an n×k matrix. Here, k is
the rank of the factorization. Such a factorization is analogous
to the k-rank SVD factorization given as R ≈ QkΣkP

T
k . Here,

U is analogous to the matrix Qk, and V is analogous to the
matrix Pk in SVD. The diagonal matrix Σk can be absorbed
in either U or V , as long as the columns of U and V are
orthogonal. Therefore, the optimum solution is not unique in
terms of how U and V are scaled. One can use the factored
matrices to predict the (i, j)th rating as follows:

r̂ij =

k∑
s=1

uisvjs. (2)

The relevant optimization problem is computed by minimiz-
ing the squared prediction error on the observed entries:

Minimize J =
1

2

∑
(i,j)∈E

(
rij −

k∑
s=1

uis · vjs

)2

+
λf
2

∑
i,s

u2is +
λf
2

∑
j,s

v2js.

Here λf is a regularization parameter. The objective function
is the same as the Frobenius norm of the error matrix, but
computed only on the specified entries in E. The value of
UV T provides the rank-k projection of all user ratings on
this hyperplane, which corresponds to the relevant estimate of
the missing entries. This approach works well for the case of
Figure 1(a). However, when the data is not linearly distributed
on a low-dimensional hyperplane, as shown in Figure 1(b),
using straightforward matrix factorization will not be robust.
In such cases, a nonlinear manifold, as shown in Figure 1(b),
is more suitable for accurately modeling the ratings.

A. Broad Contours of Approach

Traditional matrix factorization derives U and V simulta-
neously with the use of gradient descent methods. A straight-
forward approach with kernels is not a simple matter in these
settings. This is because if we transform the ratings matrix
R to the kernel feature space, there is usually no way of
recovering both the user and item factors with the use of kernel
methods. Kernel PCA allows us to only extract the embedding
(user factors), but not the basis vectors (item factors). One
can apply kernel PCA to the transpose of R, but then one can
extract the embedding of the items (item factors), but not the
basis vectors in the user space (user factors). Therefore, either
the user factors or the item factors cannot be recovered if we
assume that the ratings are transformed to a high dimensional
space. Therefore, we decouple the process of determining the
item and user factors. The first step is to use kernel PCA to
discover a robust embedding of the items in a new feature
space. This embedding is naturally defined with respect to a
high-quality feature space because of the ability of kernel PCA
to adapt to the nonlinear characteristics of the data.

Subsequently, the goal is to use matrix factorization to
discover a similar embedding of the users in this feature
space (user factors), so that the original ratings matrix can
be expressed as a product of the user factor matrix and the
item factor matrix. Therefore, kernel methods are used to fix
the feature space in which the factorization is performed. As
a result, one only needs to learn the user factors with gradient
descent; the item factors are computed using kernel PCA
and are already fixed. This type of approach has the added
benefit of reducing the overfitting inherent to kernel methods
because it does not attempt to learn the kernel features and
user factors jointly. Furthermore, the approach is relatively
easy to adapt to virtually any matrix factorization method. In
the following description, however, we will focus on biased
matrix factorization and SVD++.

III. KERNEL LATENT FACTOR MODELS

The kernel latent factor models that we propose in this paper
first use kernel PCA to extract a robust set of item features.
Subsequently, the users are expressed with respect to the kernel
item features in order to factorize the matrix. Therefore, the
overall approach can be described as follows:

1) Use kernel PCA to extract the k-dimensional item fea-
tures for each of the n items. This results in an n × k
item factor matrix V0.

2) Factorize the original ratings matrix as R ≈ UV T
0 . Note

that V0 is fixed in this factorization and only the ratings
matrix U needs to be learned. The gradient descent
steps for the resulting factorization are much simpler and
robust because one only needs to learn the user factors
in gradient descent.

In the following subsections, we will describe each of these
steps in detail.

A. Learning the Item Features with Kernel Methods
The first step is that of extracting the kernel features of each

item. This can be achieved by performing kernel PCA of the
transpose of the ratings matrix. However, the ratings matrix
is first adjusted for biases. Then, the kernel function is used
to construct an n× n item-item kernel similarity matrix. This
matrix is centered, and the k-dimensional embedding of each
item is extracted. The approach works as follows:

1) Bias Estimation and Removal: In this step, the user
and item biases are removed from each rating rij in
order to facilitate extraction of better features that are
based only on personalized interactions. The biases are
first estimated using a rudimentary model of the user
bias (buseri) and item bias (bitemj) that are associated
with each user i, and item j. The prediction model used
is as follows:

r̂ij = buseri + bitemj . (3)

The results in the following optimization formulation,
which is designed to learn only the bias variables:

Minimize J =
1

2

∑
(i,j)∈E

(rij − r̂ij)2

+
λb
2

∑
i

(buseri)2 +
∑
j

(bitemj)2

 .

The stochastic gradient-descent updates to solve for the
bias variables are as follows:

buseri ← buseri + αb(rij − r̂ij − λbbuseri)

bitemj ← bitemj + αb(rij − r̂ij − λbbitemj)

These iterations are executed to convergence. The es-
timated user and item biases are subtracted from their
corresponding rating and an unbiased ratings matrix Ru

is computed.
2) Kernel Matrix Construction: Generate an n×n kernel

matrix S from Ru, which is obtained by computing
kernel similarity between each pair of items (rows of
RT

u). Any off-the-shelf kernel function may be used
such as a Gaussian kernel. The similarity between a
pair of columns rci and rcj of Ru (i.e., rows of RT

u) is
computed as follows:

K(rci, rcj) = exp
(
−||rci − rcj ||

2

2σ2

)
. (4)

For the purpose of kernel feature computation, unob-
served entries are set to 0 after bias removal. The (i, j)th
entry of S is given by K(rci, rcj). Note that the kernel
matrix is of size n×n. This kernel matrix is then mean
centered as follows:

S ← (I −O/n)S(I −O/n). (5)

Here O is an n × n matrix containing only 1s, and I
is an n× n identity matrix. By the property of kernels,
S is a symmetric positive semi-definitive matrix with
nonnegative eigenvalues.

3) Item Embedding Extraction: Extract a rank-k embed-
ding V0 from S by using the top-k eigenvectors of S
as V0 = QΣ, where S ≈ QΣ2QT = (QΣ)(QΣ)T =
V0V

T
0 . Therefore, S is the dot-product matrix V0V

T
0

in terms of the transformed representation V of the
items. Note that the columns of Q contain the dominant
eigenvectors of S and Σ is a diagonal matrix containing
the square root of the nonnegative eigenvalues. V0 is
an n × k matrix in which each row corresponds to the
embedded representation of an item.

In typical settings, the number of items is smaller than the
number of users, and therefore the kernel matrix is often of
manageable size. The kernel bandwidth σ is estimated by
sampling a predefined number of P pairs of items from the
matrix Ru and computing√∑

(i,j)∈P ‖rci − rcj‖2

P
. (6)

As a rule-of-thumb this gives a good estimate of the kernel
bandwidth σ. In our experiments we have estimated σ using
this method.

B. Factorizing the Matrix with Extracted Item Features

The previous section discusses how one might use the kernel
method to extract the item features. This results in a new
n × k matrix V0. Each row of V0 contains a k-dimensional
representation of an item. Unlike traditional matrix factor-
ization, this representation was approximated using kernel
PCA. The next step is to factorize the ratings matrix R as
R ≈ UV T

0 , where V0 is assumed to be fixed, and only the
matrix U needs to be learned. It is assumed that the (i, j)th
entry of V0 is v0ij . Note that this is a simplified form of matrix
factorization, which can reduce the number of parameters to
be learned. The basic idea here is that the new feature space
found by the kernel method is more robust than the one found
by traditional matrix factorization because of its ability to
adjust to nonlinear manifolds. Therefore, the factorization is
performed after fixing the item factors, so that the user factors
are also defined in the same space. The prediction of the rating
rij may be performed as r̂ij =

∑k
s=1 uisv

0
js. We would like

to minimize the sum of the squared error e2ij = (rij − r̂ij)2
over all the observed entries in the ratings matrix.

As in traditional matrix factorization, a gradient-descent
method is used to optimize the error over the observed entries.

Recall that the indices of the observed entries are denoted by
E. The corresponding optimization model for the modified
problem is constructed over the observed entries in E:

Minimize J =
1

2

∑
(i,j)∈E

(
rij −

k∑
s=1

uis · v0js

)2

+
λf
2

∑
i,s

u2is.

Note that in this case, one only needs to solve for the
optimization variables uis. This can be achieved with the use
of gradient-descent methods. Therefore, we can determine the
partial derivative of J with respect to uis as follows:

∂J

∂uis
= −

∑
j:(i,j)∈E

eijv
0
js + λfuis. (7)

One can then update uis for each (i, s) using a standard
gradient-descent update as follows:

uis ← uis − αf
∂J

∂uis
. (8)

It is common to use these updates as a part of the stochastic
gradient descent (SGD) optimization. In stochastic gradient-
descent, one iterates through the observed entries (i, j) ∈ E
in random order, and makes the following updates for each
s ∈ {1, . . . , k}:

uis ← uis(1− αf · λf) + αfeijv
0
js. (9)

As in the case of gradient descent, the updates can be executed
to convergence, although executing a fixed number of sweeps
through the data set works better in practice.

C. Application to Biased Matrix Factorization

The model discussed in the previous section uses the bias
variables for feature extraction, it does not, however, incorpo-
rate the bias variables in the second stage of factorization.
It has been shown that incorporating bias often improves
the performance of a factorization model. Such models are
known as Biased Matrix Factorization (BMF) models. We use
the kernel features as the item features in order to kernelize
the BMF model. Therefore, the final prediction rule for our
proposed Kernel Biased Matrix Factorization (K-BMF) model
is as follows:

r̂ij = buseri + bitemj +

k∑
s=1

uisv
0
js. (10)

Note the use of the kernel features in the aforementioned
prediction rule. We generalize the steps used in biased matrix
factorization [1] with this kernelized prediction. The gradient
descent steps again become much simpler for the K-BMF
model because the item factors are no longer optimization
variables. Overall, the stochastic gradient descent update steps
for the above model can be summarized as follows:

buseri ← buseri + αb(eij − λbbuseri)

bitemi ← bitemi + αb(eij − λbbitemi)

uis ← uis + αf (eijv
0
js − λfuis).

Here eij = rij − r̂ij is the error between the ratings predicted
using Eq. 10 and observed ratings. Observe that we have
used two different learning rates (αb, αf) and regularization
parameters (λb, λf). This is because we follow a common
practice of using different learning rates and regularization
terms for the bias and factorization component of the model.

D. Kernelizing Implicit Feedback Factorization

The basic idea behind implicit feedback is that the act of
rating an item has tremendous predictive value in its own right,
irrespective of the actual value of the rating. Therefore, in the
simplest case, explicit feedback can be converted into implicit
feedback as a binary matrix F in which rated items take on the
value of 1 and unrated items take on the value of 0. The rows
of this matrix can then be normalized to unit norm. Therefore,
each non-zero (i.e., rated) entry in the row of F for user u is
given by 1/

√
|N(u)|, where N(u) is the set of items rated by

user u. A popular implicit feedback factorization model is the
SVD++ model. The SVD++ model shows that one can use
the derived implicit feedback matrix F to further improve the
predictions.

The SVD++ model extends biased matrix factorization by
learning implicit feedback factors for the users. Therefore a
prediction for item i and user j not only depends on the ratings
of other items similar to i that j rates, but also on how much
predictive power is contained in the act of rating these items by
any user. The original SVD++ model learns the user, item,
and implicit feedback factors from the ratings matrix R as
follows:

R = Bias Adjustment + (U + FY)V T . (11)

Here, F is the aforementioned m×n implicit feedback matrix
with unit-norm rows, and Y is an n × n matrix of item-
to-item implicit feedback affinities that need to be learned
along with U and V . We modify this model and use the fixed
kernel latent item factors V0 (derived in section III-A) instead
of learning the item factors V . The prediction rule for the
modified SVD++ model is given as follows:

r̂ij = buseri + bitemj +

k∑
s=1

v0js

(
uis +

∑
t∈N(u) yjt√
|N(u)|

)
. (12)

The variables yjt represent the item-to-item implicit feed-
back affinities. The corresponding optimization model is con-
structed using only the observed entries as follows:

Min. J =
1

2

∑
(i,j)∈E

e2ij +
λb
2

∑
i

(buseri)2 +
∑
j

(bitemj)2

+
λf
2

∑
i,s

u2is +
∑
j,t

y2jt

 .

Here, eij = rij− r̂ij is the error between the ratings predicted
using Eq. 12 and observed ratings. The above optimization
model is partially differentiated with respect to the bias
(buseri , bitemj), factorization (uis), and implicit feedback (yjt)

terms. The gradient steps for buseri , bitemi , and uis are identical
to the K-BMF model, while yjt is updated as follows:

∀t ∈ N(u) : yjt ← yjt + αf

(
eij

v0js√
|N(u)|

− λfyjt

)
.

These gradient descent iterations are similar to the original
SVD++ model [2]. The only difference is that the new itera-
tions treat all the v0js as constants, while the other parameters
are treated as optimization variables. We denote the model
given in Eq. 12 as K-SVD++.

IV. EXPERIMENTAL RESULTS

In this section we provide an extensive evaluation of the
methods proposed in this paper. The summary statistics of all
data sets used for the experiments are shown in Table I.

Table I
SUMMARY OF THE DATA SETS.

Data set Users Items Ratings Density (%)

FILMTRUST 1,508 2,071 35,497 1.13
ML100K 943 1,682 100,000 6.30
CIAO 7,257 10,000 141,984 0.20
EPINIONS 21,427 10,000 385,358 0.18
JESTER 63,978 150 1,761,439 18.35

ML100K1 and FILMTRUST2 are movie recommendation
data sets, while the JESTER3 data set is a joke recommendation
data set. The CIAO and EPINIONS data sets4 are related to
music and product ratings respectively. For the CIAO and
EPINIONS data sets we use only the top 10,000 most rated
items. We use root mean-squared error (RMSE) as an accuracy
measure for all the methods. Lower values of RMSE are
desirable. For consistency, we compared the kernelized version
of a method with its base method, and we use comparable
parameter settings for both. The data set is split into a 75%-
25% train and test split. Average test RMSE on 10 such
independent splits is reported.

We begin by comparing Biased Matrix Factorization (BMF)
and SVD++ with the proposed Kernel-Based Biased Ma-
trix Factorization (K-BMF) and Kernel-Based SVD++ (K-
SVD++). We use comparable parameter settings for all of
these approaches. We set the factorization rank k = 10, and
the learning rates for the bias and factorization components
as αb = 0.01 and αf = 0.01. The results are reported for
both high and low levels of regularization. One reason for
doing so is to show that the approach can perform well in
settings corresponding to varying levels of overfitting. For the
low regularization case, we used λb = 0.005 and λf = 0.015,
while for high regularization we set λb = 0.05 and λf = 0.15.
For all the algorithms, we estimated the model parameters
using Stochastic Gradient Descent (SGD), which is executed
for 10 full sweeps over the entire set of ratings.

1http://grouplens.org/datasets/movielens/
2http://www.librec.net/datasets.html
3http://www.ieor.berkeley.edu/∼goldberg/jester-data/
4http://www.public.asu.edu/∼jtang20/datasetcode/truststudy.htm

A. Accuracy Results

The accuracy of various factorization methods over all data
sets are reported in Tables II and III for low and high levels
of regularization, respectively. The methods that use kernel
features are clearly superior and are relatively insensitive to
the level of regularization. Out of five data sets, the kernel-
based methods convincingly win on four datasets. Higher
regularization helps BMF and SVD++ because they learn
two sets of factor matrices at a given time, but even with
higher regularization they are unable to perform better than the
proposed K-BMF and K-SVD++ methods. This demonstrates
the effectiveness of using kernel features for the collaborative
filtering task.

The maximum improvement of K-BMF over BMF is ob-
served for the JESTER data set. This improvement is about
17% percent and 13% percent for low and high regularization,
respectively. Similarly, when K-SVD++ is compared with
SVD++ the maximum improvement of 20% percent and 12%
percent can be observed for the low and high regularization
cases for the JESTER data set. Note that the JESTER data set
has a relatively large number of specified ratings in relation
to other data sets, and it has only 150 items, compared
to thousands of items in other data sets. These conditions
also enable accurate estimation of the kernel matrix and the
kernel features. The improvements in other data sets were
smaller in comparison, but still quite large compared to what
is typical5 in the collaborative filtering domain. Overall, the
methods using kernel features exhibit significant accuracy
enhancements as compared to their counterparts that do not
use these features. More importantly, the consistency of this
generic methodology over different data sets, algorithms, and
regularization conditions is noteworthy. High regularization
improves the accuracy of the baseline factorization methods
drastically. Even so, the kernel-based method is almost always
able to outperform the baseline methods.

B. Effect of Factorization Rank

In this section we will demonstrate the impact of the
factorization rank on accuracy. These set of experiments are
performed for both the low and high regularization scenarios.
Due to space constraints the results are only shown for the
ML100K and JESTER data sets. For these set of experiments
we set the learning rates at αb = 0.01 and αf = 0.01. The
effect of the factorization rank for low and high regularization
are shown in Figure 2 and Figure 3 respectively. The regular-
izers for the baseline and factor variables for the case of high
regularization are set at λb = 0.05 and λf = 0.15, while for
the case of low regularization, their values are λb = 0.005 and
λf = 0.015.

It is clear that the baseline factorization methods are not
robust to increase in the factorization rank for both the low and
high regularization scenarios. In the case of low regularization
(refer Figure 2), the RMSE on the test set for the BMF method

5In the Netflix Prize challenge, it took multiple teams several years to
improve accuracy by 10% over a relatively trivial baseline predictor.

Table II
LOW REGULARIZATION: ACCURACY COMPARISON FOR LOW REGULARIZATION (λb = 0.005, λf = 0.015).

Data set

Methods FILMTRUST ML100K CIAO EPINIONS JESTER

BMF 0.8120 0.9467 0.9835 1.0704 5.0720
K-BMF 0.7988 0.9312 0.9663 1.0462 4.2139

SVD++ 0.8133 0.9352 1.0001 1.0827 5.2920
K-SVD++ 0.7993 0.9305 0.9671 1.0465 4.2111

Table III
HIGH REGULARIZATION: ACCURACY COMPARISON FOR HIGH REGULARIZATION (λb = 0.05, λf = 0.15).

Data set

Methods FILMTRUST ML100K CIAO EPINIONS JESTER

BMF 0.8007 0.9437 0.9661 1.0439 4.8508
K-BMF 0.7982 0.9391 0.9641 1.0441 4.2306

SVD++ 0.8007 0.9410 0.9662 1.0437 4.8160
K-SVD++ 0.7984 0.9391 0.9642 1.0441 4.2301

●

●
● ● ● ●0.93

0.94

0.95

0.96

5 10 15 20

factorization rank

R
M

S
E

●BMF K−BMF

(a) ML100K

● ● ● ● ● ●4.2

4.5

4.8

5.1

5 10 15 20

factorization rank

R
M

S
E

●BMF K−BMF

(b) JESTER

Figure 2. Low Regularization (λb = 0.005, λf = 0.015): Effect of the
number of factors on the accuracy of factorization methods.

actually increases as the number of factors increase. Since
factorization methods estimate all the parameters from the
data in a single step they are more prone to overfitting. On
the other hand, since the kernel-based methods first derive
relevant features and then use them to learn a smaller set of
parameters, they are less prone to overfitting in addition to the
fact that the derived features are superior as compared to the
set of item factors learned from the data using SGD. When
the regularization is increased (refer Figure 3) BMF shows
limited improvement or the accuracy remains stable. Notice
that even though the performance of BMF improves with high
regularization, it is unable to obtain better RMSE as compared
to K-BMF.

V. CONCLUSIONS

In this paper, we showed a general technique to enhance
existing collaborative filtering methods with the use of kernel
features. As shown by our experimental results, this approach
can be used to improve the performance of traditional matrix
factorization, biased matrix factorization and SVD++ on a

●

●
●

●
●

●

0.938

0.940

0.942

0.944

5 10 15 20

factorization rank

R
M

S
E

●BMF K−BMF

(a) ML100K

● ● ● ● ● ●
4.2

4.4

4.6

4.8

5 10 15 20

factorization rank

R
M

S
E

●BMF K−BMF

(b) JESTER

Figure 3. High Regularization (λb = 0.05, λf = 0.15): Effect of the number
of factors on the accuracy of factorization methods.

consistent basis. This is a significant advantage because it
can improve many off-the-shelf collaborative filtering methods
with modest modifications. Our experimental results show
that we are able to obtain consistent improvements with this
approach in a variety of models. In our future work, we will
address the computational challenges of incorporating such
kernel-centric methods into user-based models.

REFERENCES

[1] C. Aggarwal. Recommender Systems, Springer, 2016.
[2] Y. Koren. Factorization meets the neighborhood: a multifaceted collabo-

rative filtering model. KDD, 2008.
[3] X. Liu, C. Aggarwal, Y. Li, X. Kong, X. Sun, and S. Sathe. Kernelized

matrix factorization for collaborative filtering. SIAM Conference on Data
Mining, pp. 319–416, 2016.

