
Similarity Forests

Saket Sathe
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

ssathe@us.ibm.com

Charu C. Aggarwal
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598

charu@us.ibm.com

ABSTRACT

Random forests are among the most successful methods used in

data mining because of their extraordinary accuracy and e�ective-

ness. However, their use is primarily limited to multidimensional

data because they sample features from the original data set. In

this paper, we propose a method for extending random forests to

work with any arbitrary set of data objects, as long as similarities

can be computed among the data objects. Furthermore, since it

is understood that similarity computation between all O (n2) pairs

of n objects might be expensive, our method computes only a very

small fraction of theO (n2) pairwise similarities between objects to

construct the forests. Our results show that the proposed similarity

forest approach is very e�cient and accurate on a wide variety of

data sets. �erefore, this paper signi�cantly extends the applicabil-

ity of random forest methods to arbitrary data domains. Further-

more, the approach even outperforms traditional random forests

on multidimensional data. We show that similarity forests are ro-

bust to the noisy similarity values that are ubiquitous in real-world

applications. In many practical se�ings, the similarity values be-

tween objects are incompletely speci�ed because of the di�culty

in collecting such values. Similarity forests can be used in such

cases with straightforward modi�cations.

CCS CONCEPTS

•Computing methodologies→Classi�cation and regression

trees; Supervised learning by classi�cation; •Information systems

→Data mining;

KEYWORDS

data mining; classi�cation; random forests

1 INTRODUCTION

Random forests are among the most successful classi�ers because

of their tremendous accuracy and robustness in various domains.

A recent study [8] evaluated 179 classi�ers from 17 families on the

entire UCI collection of data sets, and concluded that random forests

were the best performing classi�er among these families, and in

most cases, their performance was be�er than other classi�ers in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permi�ed. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada

© 2017 ACM. 978-1-4503-4887-4/17/08. . . $15.00
DOI: 10.1145/3097983.3098046

a statistically signi�cant way. In fact, multiple third-party imple-

mentations of random forests were tested by this study and virtu-

ally all implementations provided be�er performance than multi-

ple implementations of other classi�ers. �e only other classi�er

that sometimes outperformed the random forest on a modest num-

ber of data sets was the support-vector machine; however, even in

this case, the performance of random forests was superior in the

aggregate. �ese results suggest that the random forest classi�er

is generally quite robust across a wide variety of se�ings, and is a

good choice to use as a default classi�er in the absence of domain-

speci�c information.

Random forests are naturally designed to work with multidi-

mensional data because they sample features from the original

space in order to create the decision trees that form the ensemble

components of the forest. Inmany applications, such as time-series

data, discrete sequences, or graphs, a multidimensional represen-

tation might not exist. However, in such domains, the problem

of similarity function computation is well studied, and it may be

possible to compute similarities between objects. A further com-

plication is that similarities are o�en incompletely speci�ed when

given by domain experts. In all these cases, one cannot use tradi-

tional random forests, which are inherently designed to work with

multidimensional data sets.

A key problem is that similarity computations are o�en quite

expensive in many domains [15], and it may not be feasible to

compute all pairwise similarities from a computational point of

view. �erefore, it is important to be able to construct the random

forests e�ciently while computing an extremely small subset of

the pairwise similarities. A�er all, the number of pairwise simi-

larities scales up quadratically with the number of points. �ere-

fore, any method that requires the entire similaritymatrix between

pairs of objects to be speci�ed up front is bound to face computa-

tional and storage challenges. Furthermore, in cases where all pair-

wise similarities are not speci�ed (or even computable), this type

of approach can still be used, albeit in a limited way.

One possible solution to this problem is to extract a multidimen-

sional embedding from the similarity matrix. As we will discuss

later, this approach is not only outrageously expensive (because

the extraction of the embedding might require O (n3) time), but it

also requiresO (n2) space to materialize the similarity matrix. Just

to provide an idea of the space required, a data set containing a

million points would require space of the order of 1012, which is

already in the tera-byte order. On the other hand, the approach

discussed in this paper requires no more than O (n · log(n)) time

andO (n) space for each component of the ensemble. It is also di�-

cult to use traditional classi�cation methods (like SVMs) when the

similarities between pairs of data objects are incompletely speci-

�ed. We show how our approach can be extended to such di�cult

cases.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

395



In this paper, we propose the construction of random forests

directly with similarity matrices without assuming access to an ex-

plicit multidimensional representation of the data. We refer to this

approach as SimForest, which corresponds the fact that it is a simi-

larity forest. �e basic idea behind this approach is to assume that

the data is embedded in some theoretical multidimensional space,

and then use the similarities for computing the coordinates of data

points along 1-dimensional projections. �ese 1-dimensional pro-

jections are created by sampling pairs of points belonging to di�er-

ent classes, and then for each pair projecting the remaining points

along the theoretical multidimensional direction representing the

line joining the pair. As we will show, this projection can be per-

formed by using only the pairwise similarities. An important ad-

vantage of this approach is that by sampling pairs of points belong-

ing to di�erent classes, one o�en ends up selecting discriminating

directions at least in a randomized sense. In other words, the bias

characteristics of the individual components of the similarity for-

est are o�en very promising. In combination with the inherent

robustness of an ensemble-centric approach, high-quality results

are obtained. �erefore, much like the support vector machine,

which uses pairwise similarities in order to perform the prediction

(without explicitly materializing an embedding), we are able to use

similarities in order to construct a random forest without material-

izing an embedding. However, as discussed in [8], random forests

o�en have an advantage over the SVM in many data domains. �e

similarity forest approach extends these advantages to cases where

traditional random forests cannot be used.

An additional advantage of the SimForest approach is that it can

be naturally extended to se�ings where all pairs of similarity val-

ues are not available. �is can happen in many cases where the

number of data points is large, and the entire O (n2) matrix of sim-

ilarity values cannot be reasonably materialized. Furthermore, the

approach can be used even in domains (e.g., text) where the mul-

tidimensional representation is available, but traditional decision

trees do not always enable good splits because of feature sparsity;

in such cases, similarities can provide be�er splits.

�is paper is organized as follows. �e remainder of this sec-

tion discusses the related work. In the next section, we will intro-

duce the basic notations and de�nitions. We will also discuss the

motivation and the basic idea underlying our approach. �e Sim-

Forest algorithm is presented in section 3. �e di�erent variations

and extensions of the SimForest approach are also discussed in this

section. �e experimental results are discussed in section 4. �e

conclusions are presented in section 5.

1.1 Related Work

A detailed survey of various data classi�cation and ensemble algo-

rithms is provided in [1]. A popular ensemble method is that of

random forests. Random forests require the availability of a multi-

dimensional representation up front in order to perform the clas-

si�cation. �e support vector machine is one of the few classi�ers

that can work with similarity values in order to provide a classi-

�cation with the use of the kernel trick [6, 7]. �e kernel trick

is equivalent to the use of a linear SVM on the transformed data,

in a form that is computationally feasible [9, 19]. In general, it is

impossible to fully materialize pairwise similarity matrices to per-

form transformations especially if the data size is large. �is is the

reason that the kernel trick is preferred over explicit transforma-

tion.

A feature bagging variant of the decision tree was �rst proposed

in [11], and subsequently generalized to the present form of the

random forest by Breiman [4, 5]. Interestingly, the work in [5, 17]

shows that one can extract pairwise similarities from a random for-

est by counting the frequency with which two instances end up in

the same leaf node. In this paper, we achieve the reverse, where

we use the pairwise similarities for constructing the random for-

est. �e work in [13, 18] constructs a rotation forest, in which

a rotated axis system is constructed up front; the rotation direc-

tions are constructed using a combination of a�ribute partitioning

and PCA. Several methods have been proposed for constructing

oblique decision trees with [10] or without [12] the use of pairwise

directions. However, these methods still need the original multidi-

mensional feature space. �e close relationship between random

forests and kernel methods is provided in [16]. An extensive study

showing the robustness of random forests is available in [8]. In

this paper, we propose the use of a similarity-based approach for

the direct construction of random forests, while materializing only

a very small fraction of the pairwise similarities between objects.

2 DEFINITIONS AND MOTIVATION

We assume that we have a set of n objects denoted by O1 . . .On .

�ese n objects can be of any data type, and in most cases, we do

not even need to know the speci�c object type, as long as it is pos-

sible to compute a similarity value between them. �e similarity

between the objects Oi and Oj is denoted by Si j , and it may not

necessarily be available up front to the algorithm. For example, in

the time-series domain, a domain-speci�c similarity function may

be used. In such cases, the similarity between objects are computed

on the �y as needed by the algorithm; the algorithm design needs

to minimize such computation. It is assumed that the labels are

drawn from a set of c di�erent possibilities denoted by L = {1 . . . c}.

It is assumed that the ith object Oi in the training data is labeled

as li ∈ L. We state the problem as follows:

Problem 1 (Similarity Forest). Given a set ofn objectsO1 . . .On ,

which are labeled l1 . . . ln , construct a random forest with the use of

only computed pairwise similarities between these objects and no ac-

cess to the multidimensional representations (if any) of these objects.

�e resulting model is used for classi�cation of objects with

unknown labels. For a given test object O with computable sim-

ilarities with other training objects, a principled method must be

proposed in order to perform the classi�cation. As we will show

later in this paper, the testing process uses similar principles as the

training phase.

For now, we assume that the similarity between any pair of ob-

jects can be computed, although we will discuss later how cases

of incompletely available similarities can be e�ectively addressed.

Furthermore, in some cases, one might be able to compute dis-

tances rather than similarities. For example, one might use dis-

tance functions such as the dynamic time-warping distance or edit

distance in some domains. In such cases, the similarities can be

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

396



computed from distances using the cosine law or (as an approxima-

tion) the distances can be used in lieu of the similarities with few

implementation changes. �ese variations will also be discussed.

2.1 SimForest: �e Motivation

Even though amultidimensional representation is not provided for

the data objects, the basic idea is to assume that amultidimensional

space exists in which the objects can be embedded. It is notewor-

thy that one can use kernel methods to extract a multidimensional

representation of the objects, if all O (n2) pairs of similarities be-

tween the objects are provided. Such an approach can potentially

use O (n2) space and O (n3) time, which is not practical for most

real-world se�ings. Aside from this fact, all O (n2) pairs of simi-

larities are not required to construct a similarity forest. �is is be-

cause a similarity forest gains large accuracy advantages from the

diversity of its individual components. Each ensemble component

can o�en be constructed using a small number of pairwise similar-

ities that are selected in randomized fashion. �is is an important

advantage of the approach when the similarity computations be-

tween pairs of objects are expensive and need to be performed on

the �y.

Another point to keep in mind is that explicit embedding extrac-

tions do not always work well when the underlying space is very

high-dimensional, and when individual dimensions capture li�le

information. One advantage of directly constructing the random

forest with similarities is that one can choose to select random-

ized splits that are biased towards more discriminative directions.

Such an approach is able to retain excellent bias characteristics of

the individual ensemble components without compromising too

much on accuracy.

Let us assume that the objects O1 . . .On can be theoretically

embedded in some multidimensional space as the pointsX1 . . .Xn .

However, we do not assume that we explicitly know the represen-

tation of X1 . . .Xn ; instead, we will work only with similarities

between pairs of objects. In fact, we do not even assume that we

know the dimensionality of the embedded data points X1 . . .Xn ,

because they are not required for constructing the similarity forest.

Just as a random forest samples features from a multidimensional

data set, the similarity-based approach samples pairs of objects in

order to de�ne directions in the multidimensional space. For exam-

ple, sampling the object Oi and Oj results in the vector direction

from Xi to X j . �e data objects are then split into two groups us-

ing a hyperplane perpendicular to this direction. As we will show

later, we do not need to explicitly project the data points along this

direction, but the split can be fully executed only using pairwise

similarities. �is approach is applied recursively to construct each

ensemble component of the similarity forest. During the testing

phase, the traversal of the tree also requires such similarity com-

putations. It is noteworthy that if the pairs of sampled objects Xi
and X j are chosen to belong to di�erent classes, the randomized

split directions will naturally tend to be more discriminating. �e

number of pairs of data objects that are required to be sampled at

each node is analogous to the number of features that are sampled

by the traditional random forest algorithm. Our experimental re-

sults show that a small number of pairs such as 2 or 3 can achieve

a high level of accuracy.

3 THE SIMFOREST ALGORITHM

In order to describe the SimForest algorithm, we will denote the

theoretical embeddings by X1 . . .Xn , although none of the algo-

rithmic steps require the knowledge of these embeddings. �ere-

fore, whenever we talk about “directions” in the data space, we

are e�ectively talking about the theoretical embedding X1 . . .Xn .

�e approach constructs each decision tree in the similarity for-

est in top-down fashion by using recursive splits. �is is similar

to the traditional random forests approach. Like traditional ran-

dom forests, which sample features for spli�ing, the SimForest al-

gorithm samples directions from the original space. �e notion

of using multivariate directions in the data space for spli�ing is

also used in traditional random forests [18]. However, in order to

create a similarity-based approach, the SimForest method uses a

completely di�erent solution by de�ning the random directions in

terms of pairs of objects to enable similarity-based spli�ing.

�ese pairs of objects are sampled from among the objects present

at the node, which is to be split. One of our interesting and surpris-

ing discoveries was that a proper sampling of pairs of objects even

improves the performance of multidimensional random forests. In

other words, even if actual multidimensional representations of

data points were given, it is still more accurate to use this approach

over traditional random forests. Speci�cally, at each node, r pairs

of objects are sampled in order to de�ne r di�erent random direc-

tions. �e pairs of objects can be sampled in one of two ways:

(1) �e pairs are selected randomly without paying any spe-

cial a�ention to the class label.

(2) �e pairs are always selected randomly to belong to dif-

ferent classes. In other words, the �rst object in the pair

is selected randomly, whereas the second is selected from

the objects belonging to a di�erent class.

�e second approach tends to lead to more discriminative splits

and therefore reduces the height of the tree that is constructed. In

our experiments, we always chose this option because it provided

be�er results. In order to retain diversity, the value of r to be used

should be small. Furthermore, using small values of r is bene�cial

for the e�ciency of themethod, and one can easily ensure accuracy

by increasing the number of trees in the forest. In our experiments,

we found that it was best to set the value of r to 1.

Next, we describe the process of evaluating the quality of a split

used by the SimForest algorithm. Consider a pair of objectsOi and

Oj that de�ne the direction of the split. We would like to project

each data point along the direction from Oi to Oj . �erefore, an

object that is identical to Oi would obtain a coordinate of 0, and

Oj should obtain a positive coordinate. Consider an objectOk that

needs to be projected along this direction. As discussed earlier,

the theoretical multidimensional embeddings of Oi , Oj , and Ok

are, respectively, Xi , X j and Xk . �en, the unit direction of the

embedding is given by
X j−Xi

| |X j−Xi | |
. �e projection P (Xk ) of Xk on

this direction is therefore given by the dot product of Xk − Xi on

this unit direction. In other words, we have the following:

P (Xk ) = (Xk − Xi ) ·
X j − Xi

| |X j − Xi | |
(1)

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

397



We will show that this entire projection along the 1-dimensional

line fromXi toX j can be computed only in terms of similarities be-

tween pairs of objects. By expanding the product in the numerator

of the aforementioned expression, we obtain the following:

P (Xk ) =
Xk · X j − Xk · Xi − Xi · X j + Xi · Xi

| |X j − Xi | |

=

Sk j − Ski − Si j + Sii

| |X j − Xi | |

Here, Si j represents the similarity between objectsOi and Oj . �e

main problem at this point is the denominator, which is not ex-

pressed as similarities. It is possible to also express the denomina-

tor in terms of similarities by using the following:

| |X j − Xi | | =

√

| |X j | |
2
+ | |Xi | |2 − 2Xi · X j

=

√

Sii + Sj j − 2Si j

However, in practice, it is not necessary to explicitly compute the

denominator because (for a given pair) the denominator is inde-

pendent of the speci�c data point Ok being projected. In other

words, the denominator changes the embedded representation of

each data point by only a constant factor, and the ordering of the

projected points along the 1-dimensional line is not a�ected, whether

or not one includes the denominator in the computation. In a deci-

sion tree, a split is computed by examining all (n − 1) possible par-

titions induced by this ordering. �e (n − 1) potential split points

are midway between the (n − 1) pairs of adjacent points in this

aforementioned ordering. �erefore, we can compute the projec-

tion to within a constant of proportionality to achieve the same

result. �e corresponding projection P (Xk ) may be expressed as

follows:

P (Xk ) ∝ Sk j − Ski − Si j + Sii (2)

Furthermore, since the ith and jth objects are already �xed over all

projections computed at the spli�ing node, the last two terms are

constant for all data points within the node. In other words, we

can write the following:

P (Xk ) ∝ Sk j − Ski +C (3)

Here, C is a constant that does not a�ect the relative ordering of

the points in the projection along the line from Xi to X j . One can

view Sk j − Ski as a scaled and translated proxy for the projection

of Ok on the line joining Oi to Oj . �is proxy is used in lieu of

the actual projection both in the training and in the testing phase.

�erefore, in order to compute a split for the direction de�ned by the

pair (Oi ,Oj ), we need to sort the data objects {Ok }
n
k=1

in order of

(Sk j − Ski ) and use it to evaluate various spli�ing points.

Subsequently, the spli�ing point is chosen such that it mini-

mizes the weighted Gini index of the children nodes. Speci�cally,

if p1 . . .pc are the fractions of data points belonging to the c di�er-

ent classes in node N , then the Gini index of that node is given by

the following:

G (N ) = 1 −

c∑

i=1

p2i (4)

�en, if the node is split into two children N1 and N2, with n1 and

n2 points, respectively, the weighted Gini quality GQ (N1,N2) of

the children nodes is given by the following:

GQ (N1,N2) =
n1G (N1 ) + n2G (N2 )

n1 + n2
(5)

When r di�erent pairs of points are used at a node to de�ne possi-

ble split directions, all (n− 1) possible splits along these r di�erent

directions are tested, and the best split is retained. In similarity

forests, small values of r are typically used in order to ensure di-

versity. �is is particularly important in cases where the pairs are

chosen from di�erent classes.

Figure 1: Conceptual illustration of splitting for similarity

tree construction.

A conceptual illustration of the spli�ing process is shown in

Figure 1. Each decision tree in the similarity forest is constructed

recursively until the leaf nodes purely belong to a speci�c class.

Although the construction of a decision tree o�en has a pruning

phase in which the lower nodes of the tree are removed (to reduce

over��ing), this is not done in all types of random forests, includ-

ing the similarity forest. We construct the tree to full height with-

out pruning, until each node only contains instances belonging to

a particular class.

A�er the decision tree has been constructed, the relevant pairs

of objects and the split points are stored at each node. �ese are re-

quired for the testing phase. It is important to note that the pair of

objects (Oi ,Oj ) is ordered (for consistency with the testing phase)

because the projection Si j −Sii of objectOi is always negative, and

the projection Sj j − Sji of object Oj is always positive. �is holds

true for most reasonable similarity functions in which the abso-

lute magnitude of self-similarity Sii is greater than the absolute

magnitude of any cross-object similarity Si j . �is sign convention

is caused by the fact that the direction of the projection vector is

fromOi to Oj .

�e testing phase uses an identical approach to project the test

points on the line de�ned by the pairs of training points at each

node. If (Oi ,Oj ) is the de�ning pair of objects for a given node,

then the value of Sk j − Ski is computed for the test objectOk . �e

stored split point (say a) is used to determine which path in the

decision tree to follow depending on whether or not Sk j − Ski ≤ a.

�is step is performed for each node on the path of the tree, until

the object Ok is assigned to a leaf node. �e label of the leaf node

is reported as the prediction.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

398



3.1 Implicit Assumptions

One of the implicit assumptions behind this approach is that the

data points can be embedded in a multidimensional space. In or-

der for this fact to be true, the n × n similarity matrix can be ex-

pressed as DDT , where each row of D contains one of the embed-

ded points Xi . Any matrix that can be expressed as DDT needs

to be positive-semide�nite [2]. Many natural similarity functions

satisfy this condition. However, in practice, one can still use this

approach in a heuristic manner even if the underlying similarity

matrix is not positive semi-de�nite. In particular, the use of the

di�erence in similarities of pairs of objects (belonging to di�erent

classes) has a very natural and intuitive tendency to partition them

into di�erent classes. �erefore, even though the approach was de-

rived assuming the existence of a multidimensional embedding, it

can be used in virtually any se�ing.

3.2 Computational Complexity

One of the a�ractive features of this approach is its excellent com-

putational complexity. Explicitly extracting a multidimensional

embedding from the data might require O (n2) space and O (n3)

time. Furthermore, at least O (n2) similarity computations will be

required if the embedding is explicitly extracted. �is can be pro-

hibitive even when only a few thousand points are present in the

data. A single split of SimForest requires time that is linear in the

number of points at the spli�ing node in the tree. Since a decision

tree strictly partitions the data points, the time required to con-

struct an entire level of the decision tree is linear in the number of

points. Assuming that the height of the tree isO (log(n)), the time

required to construct the entire decision tree isO (n · log(n)). Since

a random forest typically contains a constant number of decision

trees, the overall running time is still O (n · log(n)). �e testing

procedure requires O (log(n)) time. �is e�ciency makes the ap-

proach an e�ective alternative to other competing methods.

3.3 Distances Instead of Similarities

In some se�ings, it is easier to compute distances rather than simi-

larities. For example, in the sequence domain, one might naturally

use the edit distance or the dynamic time-warping distance. In

such cases, there are two ways in which one can convert distances

to similarities:

(1) Exact approach (computationally intensive): One can

use the cosine law to convert distances to similarities. Let

U be an n × n matrix of 1s, and I be an n × n identity

matrix. Let ∆ be the n × n matrix of squared distances.

According to the cosine law, a mean-centered similarity

matrix S is constructed from the distance matrix ∆ using

the following rule [2]:

S = −
1

2
(I −U /n)∆(I −U /n) (6)

�e main disadvantage of this approach is that it requires

theO (n2) distancematrix up front, which causes challenges

from the point of view of computational and space e�-

ciency.

(2) Approximate approach (computationally e�cient):

�is approach uses the squared distances between points

in lieu of the similarities. As we will show, this is equiva-

lent to using the di�erences in similarities, if we make the

normalization assumption that all points have the same

squared norm. �is is equivalent to saying that the self-

similarityXi ·Xi of each objectOi is the same. In many do-

mains, this is a reasonable assumption to make. For exam-

ple, in the text domain, the cosine similarity between pairs

of documents always lies in (0, 1) and the self-similarity of

a document to itself is always 1. �is is because the cosine

is a normalized similarity function. Similar normalizations

are reasonable to assume in many data domains. Such an

assumption provides an e�cient heuristic approach to per-

form the spli�ing in cases where the a�nities between ob-

jects are expressed in terms of distances rather than simi-

larities.

Consider a se�ing in which the data points Oi and Oj

are the pair of objects de�ning the direction along which

all points are embedded. Let D (Oi ,Oj ) be the distance

between data points Oi and Oj . �en, the di�erence in

squared distances of pointOk with respect toOi andOj is

de�ned as follows:

D (Ok ,Oi )
2 − D (Ok ,Oj )

2
=

= | |Xk − Xi | |
2 − ||Xk − X j | |

2

= 2Xk · X j − 2Xk · X j + ( | |Xi | |
2 − ||X j | |

2)
︸                ︷︷                ︸

Zero (Because of Normalization)

∝ Sk j − Ski

�is is the same expression that we used for the case of

similarities. Note that the expression ( | |Xi | |
2 − ||X j | |

2) is

zero because it is assumed that all embedded points have

the same self-similarity. �erefore, with this assumption

there is no di�erence between using the squared distances

or the similarities for spli�ing. �is makes the approach

quite general in many se�ings, because one can use ei-

ther distances or similarities between objects, depending

on what is available in the speci�c domain at hand.

3.4 Incompletely Speci�ed Similarities

SimForest can also be used in cases where only a subset of pairwise

similarities is observed. �is is a particularly common problem in

se�ings where similarity estimation is expensive. For example, if

similarities between pairs of objects (such as images) are obtained

using crowd-sourcing, a cost may be incurred for each pairwise

similarity. Obviously, all pairwise similarities will be impossible

to collect in a large data set.

�is situation creates a problem from an algorithmic perspec-

tive. �e problem is that not all objects can be partitioned between

a pair of nodes at each split point because the projection of data

points along arbitrary directions may require unobserved similar-

ities to be available. �e �rst algorithmic modi�cation to address

this issue is that the selected pairs of objects (Oi ,Oj ) for spli�ing

should always be such that similarity between them is observed.

However, this still does not solve the problem that the similarity

of an arbitrary point Ok in that node may have unobserved sim-

ilarities with either Oi or Oj . In such cases, since Ok cannot be

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

399



assigned to one of the child nodes, we allow it to stay at the cur-

rent node as its �nal destination. �e class label of an internal node

is de�ned by its majority class. �erefore, unlike the case of fully

observed similarities, internal nodes also have a label.

When test instances are classi�ed, the same procedure is applied

in computing Sk j − Ski (when similarity is available) and assign-

ing the point Ok to a child node, depending on the relationship of

Sk j − Ski to the split point. Otherwise, if these similarities are not

available, the point Ok is assigned to an internal node. �e label

of the corresponding node is reported as the prediction.

4 EXPERIMENTAL RESULTS

In this section we present extensive experimental results compar-

ing SimForest with other competitive techniques. We start by de-

scribing the data sets in Section 4.1, followed by a description of

the evaluation methodology in Section 4.2. Next, we extensively

test SimForest’s resistance to noisy similarities in Section 4.3. In

Section 4.4 we evaluate how missing similarity values e�ect the

accuracy of SimForest. Lastly, in Section 4.5, we show results on

multidimensional data.

4.1 Data Sets

We used several classi�cation data sets for our experiments. �e

important characteristics of these data sets are given in Table 1.

�e data sets are of various sizes and have varying numbers of fea-

tures. All of the data sets are obtained from the LibSVM Website

repository of classi�cation data sets1. All data sets were normal-

ized to zero mean and unit variance.

Table 1: Summary of the Data Sets.

Data set Points Features Classes

Heart 226 13 2

Ionosphere 295 34 2

Breast-Cancer 573 10 2

Australian 579 14 2

Diabetes 645 8 2

German-Numer 840 24 2

SVMGuide3 1035 22 2

a1a 32,240 123 2

Madelon 2200 500 2

Splice 2975 500 2

Mushrooms 6824 112 2

4.2 Evaluation Strategy

For every experiment we perform a 80-20 split of the data. 80%

data is used for training the classi�ers, while 20% data is used for

testing its performance. In many experiments the training data

is further divided into portions for model building and parameter

tuning, in which 10% is used for tuning. Model performance is

measured using accuracy. Accuracy is measured as the percentage

of correctly classi�ed test data points.

1h�ps://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

4.3 Performance with Noisy Similarity
Matrices

�e primary use case of SimForest is one in which only the simi-

larities between objects are available, and the objects might not be

multidimensional. In such cases, a traditional random forest can-

not even be used, and the natural competitor to our approach is a

kernel support vector machine. �erefore, this section will show

results with respect to this natural competitor.

In many real se�ings, similarity matrices are noisy. For exam-

ple, consider the use of crowdsourcing tomeasure image similarity,

where a human crowdsourcer is tasked with assigning similarity

to a pair of images. In such cases, it is natural for errors to occur

in the similarity, which are partly due to error in judgment or even

due to the inherent bias of di�erent workers. In this section, we

will show that SimForest is highly resistant to such noisy similari-

ties, as compared to well-known classi�ers, such as SVMs.

A key point here is in the availability of noisy similarity matri-

ces, and that of testing the e�ect of a speci�c level of noise. �ere-

fore, our approach was to use multidimensional data to construct

the similarity matrices (with added noise), but not to assume ac-

cess to themultidimensional features for building the classi�cation

model (either SimForest or baselines). �is was achieved by con-

structing two types of similarity matrices, corresponding to the

cosine similarity and the Gaussian RBF similarity. Note that both

these similarity matrices are naturally used as kernels in support

vector machines, and therefore the SVM approach2 is well suited

to these types of input similarity matrices. Noise was added3 to

the similarity matrices with the use of a noise coe�cient α . For

each similarity value, a noise value that was uniformly distributed

between [0,α] was added. To mitigate the e�ect of random varia-

tions, ten di�erent instantiations of the noise were generated, and

the averaged results were reported. �e bandwidth of the RBF ker-

nel for computing the similarity matrix was selected by picking a

point of optimum performance for the SVM (without added noise),

but it was fed into both classi�ers. �is actually puts SimForest at a

disadvantage because the similarity matrix that is given as part of

the input data is biased towards working well with the (baseline)

SVM. Note that the assumption here is that the similarity matrix

is a part of the input data, and the analyst has no say in how it is

chosen, computed, or obtained.

�e similarity matrices were generated for six data sets, which

were Ionosphere,Heart,German-Numer,Diabetes,Australian,

and a1a. A SimForest with 100 similarity trees is used for this ex-

periment. In Table 2, we illustrate the accuracy obtained over var-

ious data sets with both types of similarity matrices at α = 2.5.

In all the data sets, SimForest has superior performance as com-

pared to SVM. �e best performance improvement of 14.7% and

12.6% is observed in the German-Numer data set for RBF kernel

and the Ionosphere data set for the cosine similarity, respectively.

Overall, these experiments demonstrate that SimForest is highly

noise resistant and can consistently produce superior results over

2In fact, scikit-learn has an option to input the similarity matrix rather than the
multidimensional features in its SVM implementation. �e details are available at
h�p://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html. We use this
o�-the-shelf implementation.
3It is assumed that the same noise is added to the (i, j )th and (j, i )th entries because
the similarity matrix is symmetric.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

400

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


60

65

70

75

80

0 1 2 3 4

Noise Coefficient

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(a) German-Numer

62

64

66

68

70

72

0 1 2 3 4

Noise Coefficient
A

c
c
u

ra
ry

 (
%

)

SVM

SF

(b) Diabetes

60

70

80

90

0 1 2 3 4

Noise Coefficient

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(c) Australian

65

70

75

80

85

0 1 2 3 4

Noise Coefficient

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(d) a1a

Figure 2: RBF Kernel: Comparing noise sensitivity of SimForest (SF) and SVM (best viewed in color).

62

66

70

74

78

0 1 2 3 4

Noise Coefficient

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(a) German-Numer

60

63

66

69

72

0 1 2 3 4

Noise Coefficient

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(b) Diabetes

75

78

81

84

87

90

0 1 2 3 4

Noise Coefficient

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(c) Australian

71

73

75

77

79

81

83

0 1 2 3 4

Noise Coefficient

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(d) a1a

Figure 3: Cosine Similarity: Comparing noise sensitivity of SimForest (SF) and SVM (best viewed in color).

state-of-the-art methods like support vector machines. Most im-

portantly, SimForest represents a natural generalization of the idea

of random forests to the se�ing where only similarity matrices are

available.

Table 2: Accuracy observed at a �xed value of the noise co-

e�cient (α = 2.5).

Data set RBF Kernel Cosine Similarity

SimForest SVM SimForest SVM

Heart 68.14 67.22 72.96 68.70

Ionosphere 71.69 68.59 74.22 65.91

Australian 61.88 61.23 85.79 79.49

Diabetes 68.44 64.87 67.33 62.85

German-Numer 72.00 62.80 71.85 65.40

a1a 75.94 67.81 75.97 72.88

Further experiments were performed to compare the noise resis-

tance of the proposed SimForest approach to SVMs, both of which

can exclusively operate only on similarity matrices. �e idea is

to increase the noise coe�cient α to examine the impact on the

accuracy. Figures 2 and 3 show the comparison between SimFor-

est and SVM for the RBF kernel and cosine similarity, respectively.

For both types of similarity measures, SimForest exhibits extraor-

dinary ruggedness to noise. One reason for this ruggedness is that

SVMs a�empt to maximize the inter-class margin by using a few

select points known as support vectors. In other words, SVMs ig-

nore points other than support vectors for prediction. It is partic-

ularly noteworthy that misclassi�ed points and noise are usually

support vectors that occur on the wrong side of the decision bound-

ary. �erefore, addition of noise adversely a�ects the capability

of the SVM to choose reliable support vectors, which results in a

poor decision boundary. On the other hand, SimForest is inherently

noise tolerant because of its robust approach in averaging out the

noise. �is results in higher overall accuracy of the SimForest.

�e choice of the similarity matrix (cosine or RBF) does have

some e�ect on the relative performance of the two methods, al-

though the e�ect for high amounts of noise is similar. In all the

plots shown in Figures 2 and 3, the SimForest classi�er does much

be�er than SVM when the value of α was set to large values. It

is noteworthy that the similarity matrices in real applications are

o�en highly noisy, which could be an artifact of the subjective way

in which these matrices are extracted.

4.4 Handling Missing Similarities

Aside from the noise, an additional problem occurs when many en-

tries of the similarity matrix are missing. �e presence of missing

entries is very natural when such matrices are derived from user

feedback. Manual feedback is tedious and crowd-sourced feedback

(e.g., AmazonMechanical Turk) is expensive. �erefore, it is imprac-

tical to assume that all pairwise similarities will be available. Fur-

thermore, even if the pairwise similarities can be computed, they

are computationally expensive to evaluate. �is approach is not

feasible when the number of points is very large. For example, if a

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

401



70

75

80

85

90

95

100

5% 10% 15% 20% 25% 30%

Missing Values (%)

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(a) Ionosphere

90

92

94

96

98

5% 10% 15% 20% 25% 30%

Missing Values (%)
A

c
c
u

ra
ry

 (
%

)

SVM

SF

(b) Breast-Cancer

52

53

54

55

56

57

58

5% 10% 15% 20% 25% 30%

Missing Values (%)

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(c) Madelon

68

72

76

80

84

88

5% 10% 15% 20% 25% 30%

Missing Values (%)

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(d) Splice

Figure 4: RBF Kernel: Impact of missing similarity values on SimForest (SF) and SVM (best viewed in color).

70

75

80

85

90

95

100

5% 10% 15% 20% 25% 30%

Missing Values (%)

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(a) Ionosphere

90

92

94

96

98

5% 10% 15% 20% 25% 30%

Missing Values (%)

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(b) Breast-Cancer

52

53

54

55

56

57

58

5% 10% 15% 20% 25% 30%

Missing Values (%)

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(c) Madelon

70

74

78

82

86

5% 10% 15% 20% 25% 30%

Missing Values (%)

A
c
c
u

ra
ry

 (
%

)

SVM

SF

(d) Splice

Figure 5: Cosine Similarity: Impact of missing similarity values on SimForest (SF) and SVM (best viewed in color).

matrix has 106 training points, one can hardly be expected to com-

pute all 1012 similarity values between training pairs. At the end,

one is o�en le� to using simple extrapolation rules, such as the

column-wise mean for imputation, when using a similarity-based

classi�er like an SVM. Very few classi�ers have the ability to learn

from incomplete data, particularlywhen the data is not speci�ed in

multidimensional form, but in the form of highly incomplete simi-

laritymatrices. A fundamental advantage of SimForest is that it can

be built on similarity matrices with missing values (as discussed in

section 3.4), without having to explicitly impute these values.

Table 3: Accuracy observed when 15% of similarity values

are missing.

Data set RBF Kernel Cosine Similarity

SimForest SVM SimForest SVM

German-Numer 72.25 67.60 72.05 64.25

Australian 90.14 83.47 89.63 86.23

Ionosphere 95.49 77.46 92.11 76.47

Breast-Cancer 97.00 90.94 96.42 92.07

Madelon 56.11 53.91 55.65 53.11

Splice 79.81 74.94 79.02 71.53

As in the previous section, we construct two di�erent types of

similarity matrices with the cosine and RBF similarity functions,

and assume that only the similarity matrices are available without

access to the multidimensional a�ributes. However, in this case,

we drop a certain fraction of the similarity values, and allow access

to only the retained values. �e SVM model cannot work directly

with missing values in the similarity matrix. �erefore, when such

values were required by the SVM, the column-wise mean of the

similarity matrix is used instead. In the case of the SimForest, the

missing-value approach in Section 3.4 was used. �e experiments

were repeated for 10 di�erent random samples of the missing en-

tries for all methods and data sets, and the performance values

were averaged to give stable results. Table 3 shows the results for

the case when 15% of the entries are missing. �e experiments

are performed on the German-Numer, Australian, Ionosphere,

Breast-Cancer,Madelon, and Splice data sets. �e average im-

provement of SimForest across all data sets was 9.23% for the RBF

kernel, while it was 9.42% for the cosine similarity. �us, SimForest

not only works in the presence of missing values without the need

for imputation, but is also remarkably accurate when similarities

are incompletely speci�ed.

How do the fraction of the missing values a�ect the results? We

show the sensitivity of SimForest to an increasing percentage of

missing values. �e sensitivity results are shown on four data sets,

which are Ionosphere, Breast-Cancer, Madelon, and Splice.

�ese results are shown in Figures 4 and 5 for the RBF kernel

and cosine similarity, respectively. In both cases, it is evident that

the SimForest approach is far more tolerant to missing values than

SVMs. As the fraction of missing values increases, the SimForest

approach performs much be�er than SVMs.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

402



Table 4: Accuracy on multi-dimensional data sets.

Data set Heart Ionosphere Breast-Cancer German-Numer SVMGuide3 a1a Mushrooms

SimForest 83.33 100.00 96.35 78.50 90.24 82.81 100.00

Random Forest 79.62 94.36 96.35 77.00 87.80 82.63 100.00

SVM 81.48 87.32 96.35 76.00 58.53 83.42 100.00

4.5 Multidimensional Data

Next, we illustrate the performance of SimForest on multidimen-

sional data, and we assume that access to the multidimensional at-

tributes is available. Although the SimForest approach is designed

for se�ings in which only similarities are available, it is easy to use

it in cases where multidimensional features are available. �ere

are no required changes to the implementation to adapt it to the

multidimensional case, other than the fact that we explicitly com-

pute the similarities (as needed) using the features. An additional

advantage is that we can draw from a greater choice of similarity

functions. We used the dot products between multidimensional

features as the similarity values in the SimForest. Note that one

can use other types of similarity values as well, although we used

the simplest option in this case. To ensure comparability, we also

used the dot product as the similarity for the SVM. A key di�er-

ence in the comparison here is that we can now also include a tra-

ditional random forest because the underlying multidimensional

feature representation is available. In this experiment, we include

the traditional random forest with splits on individual a�ributes.

�e number of features sampled at each node for the traditional

random forest is chosen as the square root of the data dimension-

ality, and 100 trees are grown for both random forest and SimForest.

For the SVM, the value of the slack penalty was tuned using cross-

validation. �e results are shown in Table 4. Observe that SimFor-

est is highly competitive to Random Forest and SVMs, even though

SimForest was not originally designed for a multidimensional set-

ting. �e random forest, however, comes very close to matching

the accuracy of SimForest. �is is hardly surprising because the

random forest is conceptually related to the SimForest, and is one

of the best available classi�ers. �e key takeaway from the results

on multidimensional data is not necessarily to advocate the use

of SimForest in the multidimensional se�ing, but to emphasize the

fact that it squeezes the most that is possible from a particular sim-

ilarity matrix. �is is evidenced by the fact that even direct access

to the actual features does not help a traditional random forest

win over SimForest. �is indirectly suggests that the performance

of SimForest is formidably strong for the case where one does not

have access to the multidimensional features, and only the similar-

ity matrices are available.

5 CONCLUSIONS AND SUMMARY

In this paper, we presented amethod for constructing random forests

from arbitrary object data types by using a similarity-centric ap-

proach to decision-tree construction. Our approach provides the

ability to incorporate domain-speci�c similarity functions within

the mining process. Only a small fraction of the pairwise similar-

ities are computed, and therefore all pairwise similarities do not

need to be materialized. Even where many of the pairwise simi-

larities are missing, one can use such an approach for prediction.

Although the approach is naturally designed for the case where the

input is speci�ed in the form of similarity matrices, it can be used

for multidimensional data by using the derived similarity matri-

ces of these objects. In these se�ings, the technique is competitive

with o�-the-shelf methods, which shows that SimForest gets the

most out of any particular similarity function for the purposes of

classi�cation. �e experimental results show that our approach

has signi�cant advantages over the baseline techniques of support

vector machines and random forests, which are state-of-the-art

methods for classi�cation.

REFERENCES
[1] C. Aggarwal. Data Classi�cation: Algorithms and Applications, CRC Press, 2014.
[2] C. Aggarwal. Data Mining: �e Textbook, Springer, 2016.
[3] C. Aggarwal and S. Sathe. Outlier Ensembles: An Introduction, Springer, 2017.
[4] L. Brieman. Random Forests. Journal Machine Learning archive, 45(1), pp. 5–32,

2001.
[5] L. Brieman and A. Cutler. Random Forests Manual v4.0, Technical Report, UC

Berkeley, 2003.
[6] C. Burges. A tutorial on support vector machines for pa�ern recognition. Data

mining and knowledge discovery, 2(2), pp. 121–167, 1998.
[7] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3),

pp. 273–297, 1995.
[8] M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim. Do we Need Hun-

dreds of Classi�ers to Solve Real World Classi�cation Problems?. �e Journal of
Machine Learning Research, 15(1), pp. 3133–3181, 2014.

[9] A. Graf, A. Smola, and S. Borer. Classi�cation in a normalized feature space using
support vector machines. IEEE Transactions on Neural Networks, 14(3), 2003.

[10] G. E. Hinton andM. Revow.Using pairs of data points to de�ne splits for decision
trees. In NIPS pp. 507-513, 1996.

[11] T. K. Ho. Random decision forests. �ird International Conference on Document
Analysis and Recognition, 1995. Extended version appears in IEEE Transactions on
Pa�ern Analysis and Machine Intelligence, 20(8), pp. 832–844, 1998.

[12] M. Kretowski. An evolutionary algorithm for oblique decision tree induction. In
International Conference on Arti�cial Intelligence and So� Computing, pp. 432-437,
2004.

[13] L. Kuncheva and J. Rodrguez. An experimental study on rotation forest ensem-
bles. In Multiple Classi�er Systems, pp. 459–468, 2007.

[14] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation Forest. ICDM Conference, 2008.
Extended version appears as “Isolation-based Anomaly Detection,” ACM Trans-
actions on Knowledge Discovery from Data (TKDD), 6(1), 3, 2012.

[15] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text
classi�cation using string kernels. Journal of Machine Learning Research, 2(Feb),
pp. 419–444, 2002.

[16] E. Scornet. Random forests and kernel methods. IEEE Transactions on Informa-
tion �eory, 62(3), pp. 1485-1500, 2016.

[17] Y. Qi, J. Klein-Seetharaman, and Z. Bar-Joseph. Random forest similarity for
protein-protein interaction prediction from multiple sources. Paci�c Symposium
on Biocomputing. Paci�c Symposium on Biocomputing, 2004.

[18] J. Rodriguez, L. Kuncheva, and C. Alonso. Rotation forest: A new classi�er en-
semble method. IEEE Transactions on Pa�ern Analysis and Machine Intelligence,
28(10), pp. 1619–1630, 2006.

[19] B. Schölkopf, A. Smola, K. Muller. Kernel principal component analysis. Inter-
national Conference on Arti�cial Neural Networks, pp. 583–588, 1997.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

403


	Abstract
	1 Introduction
	1.1 Related Work

	2 Definitions and Motivation
	2.1 SimForest: The Motivation

	3 The SimForest Algorithm
	3.1 Implicit Assumptions
	3.2 Computational Complexity
	3.3 Distances Instead of Similarities
	3.4 Incompletely Specified Similarities

	4 Experimental Results
	4.1 Data Sets
	4.2 Evaluation Strategy
	4.3 Performance with Noisy Similarity Matrices
	4.4 Handling Missing Similarities
	4.5 Multidimensional Data

	5 Conclusions and Summary
	References



