
Entity Search with NECESSITY

Ekaterini Ioannou‡ Saket Sathe§ Nicolas Bonvin§

Anshul Jain§ Srikanth Bondalapati§ Gleb Skobeltsyn§

Claudia Niederée‡ Zoltán Miklós§

§Ecole Polytechnique Fédérale de Lausanne (EPFL)
{name.surname}@epfl.ch

‡L3S Research Center/Leibniz Universität Hannover
{surname}@L3S.de

ABSTRACT
Loosely structured heterogeneous information spaces are typ-
ically created by merging data from a variety of different
applications and information sources. A common problem
these information spaces need to address is that various data
describe the same real-word entities (e.g., people, confer-
ences, organizations). In this demo, we introduce neces-
sity, an efficient and scalable entity store. necessity is able
to handle a large number of entities and at the same time
provide an efficient and highly accurate entity search func-
tionality for heterogeneous and partially structured queries
that follow the vision of dataspaces.

1. MOTIVATION AND OUTLINE
We are currently witnessing a rapid increase in the num-

ber of loosely structured heterogeneous information spaces -
collections of data coming from a variety of different applica-
tions and information sources. One common problem these
information spaces face, is managing their entities (e.g., or-
ganizations, events), since there will be given various repre-
sentations for the same real world entities. The necessity
entity store1 is able to address this challenge. Our system
can handle a large number of entities and at the same time
provides an efficient and highly accurate entity search func-
tionality.

necessity stores entity profiles composed by a set of attribute-
value pairs. It allows efficient entity search over these loosely
structured heterogeneous information spaces, with queries
being conditions on the entity’s attributes or values. Our
approach contributes to the idea of realizing dataspaces as
envisioned in [3]. This includes developing data models and
designing search methods for a large collection of interre-
lated data, even if the entity queries are specific to our con-
text.

necessity was implemented and evaluated in the con-

1The name of the system was inspired by philosopher
William of Ockham’s famous principle: “Entities must not
be multiplied beyond necessity”.

Copyright is held by the author/owner. Twelfth International Workshop on
the Web and Databases (WebDB 2009), June 28, 2009, Providence, Rhode
Island, USA.

text of the Entity Name System (ENS), for the OKKAM
project2. The aim of ENS is to foster the global re-use of
entity identifiers and to mediate between existing identifiers
for individual entities (details available in [1]). ENS receives
queries and checks whether the entity described in each
query exists in OKKAM. If the entity exists OKKAM re-
turns the corresponding identifier. The core benefit of ENS
is to ease integration of external applications. For example,
repositories from personal information management systems
can now rely on the service provided by ENS for creating
their URIs for entities. As such, the integrating challenge of
knowing which representations in different repositories refer
to the same entity, would be resolved by the use of shared
IDs as issued by OKKAM.

There are further application types that can profit from
our proposed approach. One example is entity search in col-
laboratively authored information spaces, such as Wikipedia3.
Each Wikipedia entry is composed by various contributors
who are not enforced to follow a specific format or schemata
in a consistent way. Moreover, processing a human query
over Wikipedia data could benefit from matching the query
with the heterogeneous data of the entities. Another exam-
ple of targeted applications for necessity is entity search
engines. These applications are built upon information ex-
tracted from Web pages. Integrating this extracted data
imposes a matching challenge of effectively identifying and
merging the existing data that refer to the same real world
entities. In addition, searching for a specific entity through
this plethora of entities requires advanced matching func-
tionalities.

The rest of this paper is organized as follows. Section 2
presents the necessity entity store, with main focus on the
entity search process. Section 3 describes the demo scenario,
and Section 4 conclusions along with future work.

2. ENTITY SEARCH PROCESS
Entities in necessity are modeled as a set of attribute-

value pairs; a representation similar to dataspace proposal [3].
For example, a person entity will be represented by name,
affiliation, email address, and whatever else is available. En-
tity search allows users or applications to retrieve the entities
—ideally only one— already in necessity that best match
an entity description provided as a query to the system. An
entity query is a set of predicates, where each predicate is a
keyword or an attribute value pair, e.g., Q1: name=“John
Smith” EPFL, and Q2: name=Smith affiliation=EPFL.

2http://www.okkam.org
3http://www.wikipedia.org

1



Figure 1: The search process of necessity.

Figure 1 shows an illustration of the search process incor-
porated in necessity for answering entity queries. When
necessity receives an entity query, it selects the appropri-
ate matching module to process it. We consider the possi-
bility of different methods for selecting the module, for ex-
ample explicit selection by user/application (e.g., based on
previous experience), or selection using query information
such as restrictions in execution time. Once the matching
module is selected, the query is reformulated to realize the
semantics of the entity storage and to cope with incomplete
or imprecise information. More specifically, this action can
generate a disjunction of predicates over the entity profiles
in the storage layer, or include missing schema information.

The generated query is then sent to the storage and in-
dexing layer for evaluation. The storage will use the dis-
tributed index to retrieve a constant number of the most
relevant entities, named “matching candidates”, and then
their corresponding entity profiles. The matching module
will receive these candidates and perform advanced entity
matching. This will select the most relevant entities for the
given query by computing the matching probability between
each candidate and the entity described in the given query.

There are two possible outcomes of the entity search pro-
cess. The first is an empty list, which indicates that the
entity described by the query is not in necessity, and thus
the application/user may choose to create it. The second
possible result is a ranked list of entities which were found
to match the query.

We evaluated necessity with 1M entities, and 500 queries4

extracted from various real data and web pages, extracted
using Cogito extractor5. Each query was manually pro-
cessed to identify the corresponding entity. The average
time taken for executing queries was bellow 0.9 second. The
following table shows the fraction of queries for which the
requested entity was returned among Top-5 and Top-10 re-
sults for three different sizes of necessity:

Entities in Store
1.005.004 980.980 940.940

Entity found in Top-5 0.89121 0.89032 0.88864
Entity found in Top-10 0.93724 0.93763 0.93987

3. DEMONSTRATION
In the demo, users will be able to perform their own entity

search queries on the necessity entity store. necessity will

4http://www.okkam.org/resources/query-set.txt
5http://www.expertsystem.net/page.asp?id=1515/

contain at least 1M entities, including people and organiza-
tions from Wikipedia, locations from GeoNames, and pro-
teins from UniProt. In addition, we will present the details
and discuss the various aspects of necessity, particularly
in relation to the topics shortly described in the following
paragraphs.

Entity Queries. necessity can handle various types
of queries made from different sources. The various types
include; queries which are over-specified or under-specified,
contain only keywords, or incomplete information.

Queries Generated for the Storage. User queries are
internally reformulated in several ways. This includes query
extension, and incorporation of higher weights to attributes
which are considered more important than others (e.g., the
attribute name of person entities).

Identification of the Matching Candidates. neces-
sity uses a key-value store for storing the entity profiles
along with a document partitioned inverted index specially
designed for processing entity queries. The primary reason
for selecting a document partitioned scheme for indexing is
to ensure scalability [2]. These are used to efficiently drill
down top-k matching candidates from the storage that best
match the given query.

Advance Matching. Our current implementation of ne-
cessity contains two matching modules. The first is group
linkage, which returns entities whose attribute value pairs
have high similarity with query predicates [4]. The second
module is generic matching, an extension of group linkage
that in addition considers domain specific similarity func-
tions and the selectivity of predicates included in the query.

4. CONCLUSIONS & FUTURE WORK
This paper introduced necessity – an entity storage for

managing entities. necessity is able to handle a large num-
ber of entities while providing an efficient and highly accu-
rate search functionality, with a long-term goal of handling
entities on web-scale. Our future plans include performing
a new set of experiments that aim at testing the system in a
distributed setup. In addition, we plan better translation of
the requests into queries for the storage with special focus
on reducing the time needed for answering these requests
and increasing the result quality.

5. ACKNOWLEDGMENTS
The authors thank Oleksandr Druzhynin for helping in

implementation; Dr. Peter Fankhauser, and Juri Luca De
Coi for allowing the use of their generic matcher; and the
participants of the OKKAM project for valuable discus-
sions. This work is partially supported by FP7 EU Project
OKKAM (contract no. ICT-215032).

6. REFERENCES
[1] P. Bouquet, H. Stoermer, C. Niederee, and A. Mana.

Entity name system: The backbone of an open and
scalable web of data. In ICSC, 2008.

[2] J. Dean. Challenges in building large-scale information
retrieval systems: invited talk. In WSDM, 2009.

[3] A. Y. Halevy, M. J. Franklin, and D. Maier. Principles
of dataspace systems. In PODS, 2006.

[4] B.-W. On, N. Koudas, D. Lee, and D. Srivastava.
Group linkage. In ICDE, 2007.

2


