
Outlier Detection with Autoencoder Ensembles

Jinghui Chen∗ Saket Sathe† Charu Aggarwal† Deepak Turaga†

Abstract

In this paper, we introduce autoencoder ensembles for

unsupervised outlier detection. One problem with neural

networks is that they are sensitive to noise and often

require large data sets to work robustly, while increasing

data size makes them slow. As a result, there are only a

few existing works in the literature on the use of neural

networks in outlier detection. This paper shows that neural

networks can be a very competitive technique to other

existing methods. The basic idea is to randomly vary on

the connectivity architecture of the autoencoder to obtain

significantly better performance. Furthermore, we combine

this technique with an adaptive sampling method to make

our approach more efficient and effective. Experimental

results comparing the proposed approach with state-of-the-

art detectors are presented on several benchmark data sets

showing the accuracy of our approach.

1 Introduction

Outliers are data points that differ significantly from
the remaining data. In the unsupervised outlier de-
tection setting, prior labels about the anomalousness
of data points are not available. In such cases, the
most common techniques for scoring data points for
outlierness include, distance-based methods [5, 11, 17],
density-based methods [6], and linear methods [21]. An
overview of different outlier detection algorithms may be
found in [1]. The basic approach in neural networks is
to use a multi-layer symmetric neural network to recon-
struct (i.e, replicate) the data. The reconstruction error
is used as the outlier score. There are several problems
with this approach. First, even though deep neural net-
works are generally considered a powerful learning tool
on large data sets, the effectiveness on smaller data sets
remains in doubt because of the overfitting caused by
the large number of parameters. Training such neural
networks often results in convergence to local optima.
Increasing data size reduces overfitting but can cause
computational challenges. Furthermore, there is some-
times an inherent bottleneck on data availability. Al-
though neural networks have been explored for outlier
detection [10, 13, 22], this class of approaches has not
been popular in the outlier detection community be-

∗University of Virginia.
†IBM T. J. Watson Research Center.

cause of the aforementioned drawbacks.
In this work, we employ autoencoder ensembles

for unsupervised outlier detection. More specifically,
instead of fully connected autoencoders, various ran-
domly connected autoencoders with different structures
and connection densities, which reduces the computa-
tional complexity, are used as base ensemble compo-
nents. Moreover, we leverage a carefully designed adap-
tive sample size method within the ensemble frame-
work to achieve the dual goals of improved diversity
and training time. Therefore, our approach combines
adaptive sampling with randomized model construction
in order to achieve high-quality results. We refer to this
model as RandNet, which stands for Randomized Neural
Network for Outlier Detection.

Even though the sparse structure of each autoen-
coder allows overfitting, significant overall gains in effi-
ciency and benefits from diversity of the various com-
ponents can be obtained if the scores from individual
ensemble components are combined. We present experi-
mental results showing the effectiveness of the approach.
Although we do not investigate the option of training
the base ensemble components in parallel, a salient ob-
servation about this approach is that the training pro-
cess can be easily parallelized.

The remainder of this paper is organized as follows.
We will discusses related work in Section 2. Section 3
discusses our proposed autoencoder ensemble method
for outlier detection. Section 4 discusses the experi-
mental results, while the conclusions are presented in
Section 5.

2 Related Work

The problem of outlier analysis has been studied widely
in the community [1]. Numerous methods such as
distance-based methods [5, 11, 17], density-based meth-
ods [6], linear methods [21], and spectral methods [8,
18] have been proposed. The autoencoder method
can be seen as a generalization of the class of linear
schemes [10], in which a nonlinear representation of the
data is constructed for outlier detection. Comparisons
of neural network methods may be found in [22] and a
detailed survey on neural networks may be found in [13].
One can view a neural network as a model that scores
outliers with the use of nonlinear dimensionality reduc-
tion. Recently, ensemble methods have found increas-



ing interest in the literature [2, 3, 4]. Several ensem-
ble methods such as feature bagging [12], subspace his-
tograms [19], high-contrast subspaces [9], and locally
relevant subspaces [14, 15] have been proposed. The
spectral methods in [8, 18] can also be viewed as non-
linear dimensionality reduction methods that reduce the
data representation in a nonlinear way in order to score
data points as outliers.

We also use adaptive sampling in order to speed up
our training process of the neural network. Although
the adaptive sampling approach has been used in a dif-
ferent stochastic optimization problem (which is con-
vex) [7], there is no guarantee that it will work in prac-
tice in a non-convex optimization problem like neural
networks. Correspondingly, the precise approach for
adaptive sampling is also somewhat different from the
linear adjustment advocated in [7] which seems to be
unreasonable with the settings in this paper (a detailed
discussion on this topic is provided in section 3.3).

3 The RandNet Model

An autoencoder is a special type of multi-layer neural
network that performs hierarchical and nonlinear di-
mensionality reduction of the data. Typically, the num-
ber of nodes in the output layer is the same as the input
layer, and the architecture is layered and symmetric.
The goal of an autoencoder is to train the output to
reconstruct the input as closely as possible. The nodes
in the middle layers are smaller in number, and there-
fore the only way to reconstruct the input is to learn
weights so that the intermediate outputs of the nodes
in the middle layers represent reduced representations.
Figure 1 illustrates a fully connected autoencoder. Note
that the outputs of the bottleneck layer represent the
reduced representation.

Since the autoencoder creates a reduced representa-
tion of the data, it is a natural approach for discovering
outliers. The basic idea here is that outliers are much
harder to be accurately represented in this form than the

input layer output layer

bottleneck hidden layer

approximate 
reconstruction

Figure 1: Sketch of the fully connected autoencoder
model used by RandNet.

inliers (or normal points). Therefore, on reconstructing
an outlier, the error will be large. This provides a natu-
ral way to score a data point. Nonlinear dimensionality
reduction methods such as spectral transformations [18]
have recently been explored in the literature with some
success. In this light, it is somewhat surprising that the
success with neural networks has been limited. An im-
portant issue is that the outliers are often themselves
included within the training model. As a result, over-
fitting becomes increasingly likely. This is one of the
reasons that neural networks have not achieved much
success in spite of the known success of other dimen-
sionality reduction methods in outlier detection. En-
semble learning methods [2] present a natural solution
to address this dilemma.

Ensemble learning methods are algorithms that
combine the predictions from different base detectors
in order to create more robust results. The basic idea is
that predictive algorithms often have a natural variance
in the scores, depending on the choice of the data or
the design of the base model. Therefore, by using
multiple executions of the model and taking a central
estimator of the scores (such as the mean or median),
the variance is reduced. However, there is no guarantee
that the combination of multiple detectors will always
perform better than the best individual detector in
the ensemble. In order to make ensemble learning
methods work, the individual ensemble components
must be adequately diverse. This is achieved by creating
predictive models such that each ensemble component
is able to capture different parts of the underlying
patterns. The combined model is often more powerful
than the individual detectors.

The general idea of our method is to use ensemble
learning method with autoencoders to obtain higher
accuracy. However, directly combining a set of fully
connected autoencoders will often not be helpful. Due
to the fact that the same network structure is used,
the results we obtain from the autoencoders would be
somewhat similar. This lack of diversity is unhelpful
from the point of view of variance reduction. To address
this problem, we use randomly connected autoencoders
in which some of the connections are randomly dropped.
Figure 2 shows a two-layer example of a randomly
connected autoencoder. It is worth noting that this
approach is fundamentally different from methods like
Dropout [20], in which some of the connections are
randomly masked during training and there is only a
single model being trained. In RandNet, we have a set
of completely independent (different) neural networks,
and the result are combined. In Dropout [20], the
main purpose of masking connections is to avoid co-
adaptation of the weights within the same network.
While in RandNet, we allow overfitting within a single



fully connected
autoencoder layers

randomly connected
autoencoder layers

randomized connection 
dropping

Figure 2: Left: A two-layer fully connected autoen-
coder. Right: The same autoencoder after permanently
dropping connections.

network but reduce the variance only in the combination
from multiple networks.

3.1 Neural Network Structure The basic autoen-
coder structure uses a symmetric design that is similar
to that shown in Figure 1. The input layer has exactly
the same number of nodes as the dimension of our train-
ing data, denoted as d. The output layer will have the
same number of nodes due to the symmetric design of
autoencoders. For all the following layers, up to the
bottleneck hidden layer, the number of nodes is set at a
ratio of α from the previous layer. α is referred to as the
structure parameter. An exactly symmetric structure
applies to the layers after the bottleneck layer. Note
that for all layers, the minimum limit for number of
nodes is 3. Therefore, if the ratio-wise approach indi-
cates fewer than 3 nodes for a layer, then the number
of nodes in the layer is set to 3. This is to avoid an ex-
cessive level of compression in the middle layer so that
the data cannot be properly reconstructed.
Choice of Activation Functions: At the basic level,
each node in the neural network computes a linear
function of its inputs. The activation function applies
a nonlinear function to the linear combination of inputs
created by a unit of computation. For the choice of
the activation functions we use the Sigmoid and the
Rectified Linear (ReLU) [16] units. Specifically, in the
first hidden layer (i.e., the one nearest to the input layer)
and the output layer, the Sigmoid activation function
is used. The Sigmoid activation function is defined as
follows:

σ(x) =
1

1 + e−x
.

For all other layers, we use the ReLU activation func-
tion:

f(x) = max(0, x).

Using different activation functions in different layers
aims at balancing the advantages and disadvantages of

the two activation functions. In practice, we found that
this combination achieves better performance than a
fixed choice. The Sigmoid function is known to cause
the “vanishing gradient problem”, and its operations
are also expensive compared to the ReLU unit. The
ReLU unit is simple and computationally costless, and
it does not suffer from the vanishing gradient problem.
However, it suffers from a different problem known
as the “Dying ReLU” problem, recently discovered by
researchers in [24]. It means that during training, a
weight update triggered by a large gradient flowing
through a ReLU neuron could make the neuron inactive
for other data points in all future time. Finally, this will
cause many of the neurons to be in a dying state where
no weight is updated and the network continues to give
the same output over iterations. This motivates the use
of Sigmoid functions at the two ends of the network, and
the ReLU for other layers. On one hand, the use of the
Sigmoid functions will ensure that even if all the middle
layer ReLU neurons are dead, at least we have two layers
properly working at the two ends of the network, which
guarantees an improved worst case. On the other hand,
the dying ReLU problem usually happens when the
gradients are too large, the vanishing gradient caused
by the Sigmoid function actually helps in preventing
ReLU units from dying during backpropagation.
Random Connection Generation: Here we intro-
duce the randomly connected model for autoencoders.
The basic idea of our approach is to randomly drop con-
nections in a neural network, and yet retain a certain
level of control on the connection density between var-
ious layers and also create models with different types
of densities.

The random connection generation proceeds as fol-
lows. Suppose, we have two adjacent layers with nodes
`1 and `2, then there are `1 · `2 connections possible be-
tween these two layers. From these possible connections
we choose `1 ·`2 connections with replacement. Since we
sampled with replacement, in the sampled `1 · `2 con-
nections we will have some redundant (or repeated) and
some missing connections. Then we keep all the con-
nections that are present in the `1 · `2-sized sample we
choose. The dropped connections are those connections
that we did not pick during sampling. Notice that with
this approach we vary on the rate of sampling by the
uncertain number of missing connections, and thus are
able to produce different types of randomly connected
autoencoders with varying densities.

3.2 Outlier Scoring Each ensemble component is
constructed by randomly sampling connections, insert-
ing the aforementioned activation functions and enforc-
ing the network structure. Also it is trained only on
a randomly drawn sample of size s from the full data



set. However, once all the neural networks (or ensemble
components) are trained, each data point can be scored
by each network by computing autoencoder reconstruc-
tion error. The outlier score of each data point in each
ensemble component is obtained as the reconstruction
error of that point, when we run it through the neural
network.

Figure 3: Example of the outlier score vector and final
outlier score computation.

Suppose we have m ensemble components, with
the training set of n data points and d dimensions.
We denote the i-th ensemble component’s j-th record
input data point as xij ∈ Rd and the autoencoder’s
reconstructed output as oij ∈ Rd. Thus, for i-th
ensemble component, we create an Outlier Score Vector,
denoted by OSi and represented as follows:

[OSi]j =

d∑
k=1

([xij ]k − [oij ]k)2. i ∈ 1 . . .m, j ∈ 1 . . . n

Note that the outlier score vector is obtained by the
squared sum of the error in reconstruction over the
different dimensions of the data point. If this outlier
score vector is not normalized, then the scores may vary
rather wildly over different components, especially since
different components might have different overfitting
propensities. To address this problem, we normalize
the score vector of each component, so that it has a
standard deviation of one unit. The final outlier score of
a data point is obtained by computing the median score
over different ensemble components. An illustration of
the scoring process is shown in Figure 3, where each
row represents the outlier score vector of an ensemble
component.

3.3 Training and Adaptive Sampling In this sec-
tion we present RandNet’s training and adaptive sam-
pling process. Although the back-propagation algo-

rithm for training a neural network is fairly standard,
there are a few major issues related to the learning rate
and adaptive sampling that we addressed in our design
of RandNet. These issues are discussed below:
Adaptive Learning Approach: We use an adaptive
learning method, referred to as RMSprop [23]. The basic
idea is to divide the gradient by a running average of its
recent magnitude. It keeps a running average RA(t) as
follows:

RA(t) = ρ ·RA(t− 1) + (1− ρ) · g2t ,

where gt stands for the gradient computed at time
t. The parameter ρ regulates the adaptive level of
adjustment, and it was chosen to be 0.9. The RMSprop
approach works by updating the parameters as follows:

θt+1 = θt −
η√

RA(t) + ε
· gt,

Here, η is the static learning rate and ε is a small
value that avoids ill-conditioned solutions, such as those
caused by division by zero.
Pre-training: It is well-known that with deep neural
networks, it is very easy to get trapped in local optima,
which prevents further effective backpropagation of
errors. Pre-training is a way of initializing the weights,
so that the initial starting point is in a good “basin”
from where gradient-descent procedure has a better
chance of reaching a global optimum. Pre-training is not
always needed for accuracy when a very large amount of
data is available. However, pre-training speeds up the
gradient-descent because the starting point is of a higher
quality. Furthermore, pre-training also has accuracy
advantages for smaller data sets. We used layer-wise
pre-training where the weights of two symmetrically
chosen layers were trained at one time. The idea here is
to first train the outermost pair of layers with a single
hidden layer (thereby creating a shallow, three-layer
network) in order to learn the initial set of the weights
of the outermost layers and the corresponding reduced
representation. This reduced representation is then
used to train the next set of layers with another three-
layer model and the next level of hierarchical reduction
is obtained. For each ensemble component, we used 1/3
of its training data to perform layer-wise pre-training.
Adaptive Sampling: The purpose of adaptive sam-
pling is to make the optimization procedure more effi-
cient by changing (or adapting) the training sample size
in each iteration. The key insight is that typically a
very accurate computation of the gradient is not neces-
sary during the early stages of training. This is because
in early stages the solution is relatively crude and all we
need is an approximately correct direction. Therefore,
small sample sizes are sufficient. As the algorithm pro-
gresses and the candidate solution starts to approach



(a) (b) (c)

Figure 4: An illustration of the modified adaptive sample size selection method.

the optimal point in the solution space, more accurate
gradients are needed to make further progress. Thus, in
practice using an adaptively increasing sample size dur-
ing training would be a beneficial strategy. Although
some adaptive sampling methods are occasionally used
in convex optimization problems, it is generally harder
to use them in neural networks because the optimization
problem is highly nonlinear.

In particular, the original algorithm in [7] that is
suited to convex optimization problems is adapted to
neural networks.. The original method of adaptive
sampling is shown in Figure 4(a). This method uses
a constant sample size in an initial phase. At some
point, the sample size increase linearly until the size
increases to that of the full data set. However, a linear
increase can be too slow for a neural network in which
each iteration is significantly slow and the amount of
improvement in later iterations can often be small. A
second solution is to forego the initial phase of using
a constant sample size and start with a larger sample
size. This approach is shown in Figure 4(b). This
solution is even worse because the use of an initially
large sample size will result in rather slow training.
In order to solve these problems, we use a strategy of
increasing the sample size by a constant factor in each
iteration, which results in an exponentially increasing
sample size with the number of iterations. Our strategy
is illustrated in Figure 4(c). Given a fixed number of
iterations and a factor by which to increase the sample
size in each iteration, it is easy to compute the starting
sample size and to increase it by the pre-defined factor
in each iteration.

4 Experimental Results

In this section, we present our experimental results
on several publicly available data sets. We compare
our approach against several baseline methods and also
present sensitivity analysis results. We set the number
of layers to be 7, the structure parameter α as 0.5.

The adaptive factor is set as 1.01. We perform the
experiments on 100 ensembles and train each of them
for 300 iterations. The training size s equals n/10.

4.1 Data Sets and Performance Metrics We
used several real data sets from the UCI Machine
Learning Repository1. We summarize the important
statistics about these data sets in Table 1. In data sets
with unbalanced classes, the instances from the majority
class(es) are labeled as inliers, while the instances from
the minority class(es) are labeled as outliers. In data
sets with reasonably balanced classes, a minority class is
created by uniformly down-sampling one of the majority
classes. Furthermore, every feature column in each data
set has been normalized to be within the range of [0, 1].

Table 1: Summary of the data sets.

Data set Samples Features Percent
Outliers(%)

Cardio 1,831 21 9.6
Ecoli 336 7 2.7
Kddcup99 102,563 41 5.2
Lympho 148 18 4.1
Optdigits 5,216 64 2.9
Pendigits 6,870 16 2.2
Seismic 2,584 11 6.5
Thyroid 3,772 6 2.4
Waveform 3,509 21 4.7
Yeast 1,364 8 4.8

The Cardiotocography (Cardio) data set contained
measurements of fetal heart rate signals. The classes
in the data set were normal, suspect, and pathologic.
The suspect class was discarded. The normal class was
marked as inliers, while the pathologic class formed the
outliers. The Ecoli data set contained 8 classes; here

1https://archive.ics.uci.edu/ml/datasets.html



Table 2: Accuracy comparison with state-of-the-art methods. The best AUC is highlighted in boldface.

Data set RandNet Hawkins [10] LOF [6] HiCS [9] Spectral [18]

Cardio 92.87 92.36 50.63 92.37 78.90
Ecoli 85.42 82.87 39.35 53.89 91.81
Lympho 99.06 98.70 97.77 92.37 78.16
Optdigits 87.11 87.63 67.11 43.63 2.66
Pendigits 93.44 89.81 54.37 60.61 87.88
Seismic 71.28 68.25 55.59 59.90 66.71
Thyroid 90.42 87.47 63.04 43.76 72.94
Waveform 70.05 61.57 55.48 59.24 62.88
Yeast 82.95 82.12 54.30 54.45 77.70

cardio
ecoli

kddcup99
lympho

optdigits

pendigits
seism

ic
thyroid

waveformyeast

Datasets

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C
 S

co
re

Figure 5: Box-plots showing the ensemble performance of RandNet.

we used classes omL, imL and imS as outliers and the
rest were included as inliers. The Kddcup99 data set
was a network intrusion data set from the KDD Cup
Challenge, 1999. The data points corresponding to in-
trusion attacks were marked as outliers, while exclud-
ing the DDoS (Denial-of-Service) attacks from the data
set because of their copious nature. The other packets
were marked as inliers. In the Lymphography (Lym-
pho) data set, classes 1 and 4 were outliers while the
others were inliers. The Waveform data set contained
three classes (namely 0,1, and 2) of waves. We sam-
pled 10% of the points from class 0 and included them
as outliers, while all instances of the other classes were
included as inliers. The Optdigits was a data set that
contained digits in the range of 0-9. The instances of
digits 1-9 were inliers and the outliers were 150 instances
of the digit 0. The Seismic Bumps (Seismic) contains
the data set for forecasting seismic bumps as hazardous
or non-hazardous. Instances of the hazardous class were

marked as outliers, while the non-hazardous was marked
as inlier. Non-numerical features were removed from the
data set. The ANN-Thyroid (Thyroid) and Pendigits
data sets are from [9]. There are 10 classes in the Yeast
data set. Out of which, classes ME3, MIT, NUC and
CYT were included as inliers, while a 5% sample of ran-
domly selected points from other classes were included
as outliers.

The Receiver Operating Characteristic (ROC)
curves are used to generate the full trade-off between
the true positive rate and the false positive rate. The
ROC curve can be summarized by the area under the
ROC curve. This is known as the AUC. For RandNet we
report the AUC computed using the final outlier scores.

4.2 Baselines We compare our results with several
other baselines reflecting the different aspects of our
approach. Specifically, we use another neural network
method by Hawkins [10], a conventional distance-based



algorithm like LOF [6], an ensemble-centric algorithm
HiCS [9], and another spectral nonlinear dimensionality
reduction method [18]. We set the number of nearest
neighbors to k = 5 in all our experiments. The HiCS
method is an ensemble-centric subspace outlier detec-
tion technique that averages the scores from multiple
subspaces. For HiCS the number of Monte Carlo trials
was set to 80, α = 0.1, and candidate cutoff was set to
40.

4.3 Accuracy Results In Table 2, we compare our
experimental results with the other state-of-the-art out-
lier detection baselines. In most cases, our approach is
able to outperform the state-of-the-art methods signif-
icantly. The results are somewhat correlated with the
other neural network baseline, which is not particularly
surprising. In order to show the specific relationship be-
tween the performances of our method and the baseline
technique by Hawkins [10], we use box plots to show
the performances of the individual base detectors. The
box-plot shows the variation in AUC performance of the
base components. The median of the box plot is shown
by a black line. The grey diamond shows the perfor-
mance of the baseline neural network by Hawkins [10],
and the blue dot represents RandNet’s ensemble AUC
score. In Figure 5 we show the box plot results of our
ensemble method on several public data sets. We can
see that in almost all data sets our method achieves ma-
jor gains over the baseline method. This demonstrates
the advantages of using ensembles of neural networks.
Note that there is some degradation in the base perfor-
mance, but we can still achieve high-quality results due
to variance reduction.

4.4 Parameter Sensitivity In this part we test the
sensitivity of the key parameters in our experiments.
Due to space limitations, we only show the results for a
subset of the data sets.
Number of Ensemble Components: We analyze the
parameter sensitivity to the number of ensemble compo-
nents m. We vary the number of ensemble components
from 25 to 200, to demonstrate the effect of varying
this parameter. The result shows that RandNet is not
very sensitive to the number of ensemble components.
As we can see in Figure 6, there is no significant accu-
racy improvement after the number of ensembles reaches
100. This is typical behavior observed in all ensemble
methods where the performance stabilizes after a cer-
tain point.
Number of Layers: We analyze the parameter sensi-
tivity to the number of layers that regulate the depth
of the network. The number of layers was varied from
3 to 9. It is evident from Figure 7 that our method is
quite sensitive to the number of layers in the network,

especially with larger data sets. On the one hand, more
depth in the network provides more powerful model-
ing ability for the autoencoder. On the other hand,
deeper networks are significantly harder to train, espe-
cially with limited data. Observe that in Figure 7 the
AUC initially shows improvement but then it starts to
degrade. It performs quite poorly when 9 layers are
used. It is evident that using 7 layers offers a good
trade-off point between modeling capability and train-
ing challenges.
Adaptive Sampling Factor: We analyze the pa-
rameter sensitivity to the adaptive sampling factor.
The adaptive sampling factor controls the exponential
growth of the training sample size in each training it-
eration, and regulates the effectiveness of the adaptive
sampling method. We test it by setting the sample-size
to exponential growth ratios of 1.001, 1.005 and 1.01. In
addition, we tested the case in which there is no adap-
tive sample size, which corresponds to the case in which
the growth ratio is set to 1.

The results from this experiment are shown in Fig-
ure 8. It is evident that the algorithm could indeed
achieve good performance without an adaptive sam-
pling strategy. However, the computational cost is much
higher if adaptive sampling is not used. In particu-
lar, if 300 iterations as shown in Figure 8 are used
then the performance is quite similar for all experi-
ments. With the adaptive factor set to 1.001, 1.005,
and 1.01 respectively, we need to respectively perform
only 86%, 51%, 31% of the original number of gradient
updates. This result clearly illustrates the significant
efficiency improvement brought by adaptive sampling.
Structure Parameter α: The structure parameter α
regulates the number of nodes in various layers. We test
it under four situations, by setting α to 0.3, 0.4, 0.5 and
0.6, respectively. The results from these experiments
are shown in Figure 9. Observe that the accuracy is
not very sensitive to the structure factor α, as long as α
lies in a reasonable range. Intuitively speaking, larger
α’s denote more nodes in the network hence it should
have more powerful modeling ability. However, higher
modeling ability does not always translate to higher
accuracy due to the tendency of the neural network
to overfit. Within the tested range, the performance
improved slightly with α but the differences were not
substantial.

5 Conclusions

This paper shows how to use an ensemble of autoen-
coders in order to perform anomaly detection. The
proposed technique improves significantly over the ear-
lier neural network methods for anomaly detection. It
uses random edge sampling in conjunction with adap-
tive data sampling in order to achieve high-quality re-



25 50 100 200
Ensemble Components

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94
A

U
C

 S
co

re

(a) Cardio

25 50 100 200
Ensemble Components

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C
 S

co
re

(b) Thyroid

25 50 100 200
Ensemble Components

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C
 S

co
re

(c) Pendigits

Figure 6: Sensitivity to number of ensemble components.

3 5 7 9
Layers

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
U

C
 S

co
re

(a) Cardio

3 5 7 9
Layers

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C
 S

co
re

(b) Thyroid

3 5 7 9
Layers

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C
 S

co
re

(c) Pendigits

Figure 7: Sensitivity to number of neural network layers.

1 1.001 1.005 1.01
Adaptive Factor

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
U

C
 S

co
re

(a) Cardio

1 1.001 1.005 1.01
Adaptive Factor

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C
 S

co
re

(b) Thyroid

1 1.001 1.005 1.01
Adaptive Factor

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C
 S

co
re

(c) Pendigits

Figure 8: Sensitivity to adaptive sampling factor.



0.3 0.4 0.5 0.6
Structure parameter (α)

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94
A

U
C

 S
co

re

(a) Cardio

0.3 0.4 0.5 0.6
Structure parameter (α)

0.5

0.6

0.7

0.8

0.9

1.0

A
U

C
 S

co
re

(b) Thyroid

0.3 0.4 0.5 0.6
Structure parameter (α)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

C
 S

co
re

(c) Pendigits

Figure 9: Sensitivity to the structure parameter α.

sults. Unlike the earlier methods proposed for neural-
network based outlier detection, our approach is able to
avoid overfitting and achieve robustness because of its
ensemble-centric approach. Furthermore, it is also com-
petitive with respect to the state-of-the-art methods.

References

[1] C. Aggarwal. Outlier Analysis. Springer, 2017.
[2] C. Aggarwal. Outlier Ensembles: Position Paper, ACM

SIGKDD Explorations, 2013.
[3] C. Aggarwal, S. Sathe. Theoretical Foundations and

Algorithms for Outlier Ensembles. ACM SIGKDD Ex-
plorations, 2015.

[4] C. Aggarwal, S. Sathe. Outlier Ensembles: An Intro-
duction. Springer, 2017.

[5] F. Angiulli, C. Pizzuti. Fast outlier detection in high
dimensional spaces, PKDD, 2002.

[6] M. Breunig, H.-P. Kriegel, R. Ng, J. Sander. LOF:
Identifying Density-based Local Outliers, SIGMOD,
2000.

[7] H. Daneshmand, A. Lucchi, and T. Hofmann. Starting
small–learning with adaptive sample sizes. ICML, 2016.

[8] X. Dang, B. Misenkova, I. Assent, R. Ng. Outlier detec-
tion with space transformation and spectral analysis.
SDM, 2013.

[9] F. Keller, E. Muller, K. Bohm. HiCS: High-Contrast
Subspaces for Density-based Outlier Ranking. ICDE,
2012.

[10] S. Hawkins, H. He, G. Williams, R. Baxter. Outlier
detection using replicator neural networks. In DaWaK,
pages 170–180. Springer, 2002.

[11] E. Knorr, and R. Ng. Algorithms for Mining Distance-
based Outliers in Large Datasets. VLDB , 1998.

[12] A. Lazarevic, V. Kumar. Feature Bagging for Outlier
Detection, KDD, 2005.

[13] M. Markou, S. Singh. Novelty detection: a review: part

2: neural network based approaches. Signal processing,
83(12), 2003.

[14] E. Muller, M. Schiffer, T. Seidl. Statistical Selection
of Relevant Subspace Projections for Outlier Ranking.
ICDE, 2011.

[15] E. Muller, I. Assent, P. Iglesias, Y. Mulle, K. Bohm.
Outlier Ranking via Subspace Analysis in Multiple
Views of the Data, ICDM, 2012.

[16] V. Nair, G. Hinton. Rectified linear units improve
restricted boltzmann machines. ICML, 2010.

[17] S. Ramaswamy, R. Rastogi, K. Shim. Efficient Algo-
rithms for Mining Outliers from Large Data Sets. SIG-
MOD, 2000.

[18] S. Sathe, C. Aggarwal. LODES: Local Density Meets
Spectral Outlier Detection. SDM, 2013.

[19] S. Sathe, C. Aggarwal. Subspace Outlier Detection in
Linear Time with Randomized Hashing. ICDM, 2016.

[20] N. Srivastava, G. E. Hinton, A. Krizhevsky, I.
Sutskever, R. Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1), 1929-1958, 2014.

[21] M. Shyu, S. Chen, K. Sarinnapakorn, L. Chang. A
novel anomaly detection scheme based on principal
component classifier. ICDMW, 2003.

[22] G. Williams, R. Baxter, H. He, S. Hawkins, L. Gu. A
Comparative Study of RNN for Outlier Detection in
Data Mining. ICDM , 2002.

[23] http://climin.readthedocs.io/en/latest/

rmsprop.html

[24] http://cs231n.github.io/neural-networks-1/


